
SIMETRIX
SPICE AND MIXED MODE SIMULATION

SIMULATOR REFERENCE MANUAL

Copyright ©1992-2012 SIMetrix Technologies Ltd.

Trademarks
PSpice is a trademark of Cadence Design Systems Inc.
Hspice is a trademark of Synopsis Inc.

Contact
SIMetrix Technologies Ltd.,
78 Chapel Street,
Thatcham,
RG18 4QN, United Kingdom

Tel.: +44 1635 866395
Fax: +44 1635 868322
Email: info@simetrix.co.uk
Internet http://www.simetrix.co.uk

Copyright © SIMetrix Technologies Ltd. 1992-2012
SIMetrix Simulator Reference Manual 30/10/2012

Table of Contents
Table of Contents

Chapter 1 Introduction

Overview..12
The SIMetrix Simulator - What is it?12
What is in This Manual ..12

Chapter 2 Running the Simulator

Using the Simulator with the SIMetrix Schematic Editor..13
Adding Extra Netlist Lines ..13
Displaying Net and Pin Names.................................13
Editing Device Parameters14
Editing Literal Values - Using shift-F715

Running in non-GUI Mode ...15
Overview...15
Important Licensing Information15
Syntax...16
Aborting ..17
Reading Data..17

Configuration Settings ...17
Netlist Format ..20

File Format ...21
Language Declaration ..21
Comments ..22
Device Lines ...22
Simulator Statements ...24

Simulator Output..24
The List File ..24
The Binary Data File...25
Output Data Names..26

Data Handling - Controlling Data Saved..........................27

Chapter 3 Simulator Devices

Overview..29
Using XSPICE Devices..29

Vector Connections ..29
Connection Types...30

Using Expressions ...31
Overview...31
Using Expressions for Device Parameters31
3

Simulator Reference Manual
Using Expressions for Model Parameters................ 32
Expression Syntax ... 32
Optimisation ... 43

Subcircuits... 44
Overview .. 44
Subcircuit Definition ... 44
Subcircuit Instance... 45
Passing Parameters to Subcircuits 46
Nesting Subcircuits .. 46
Global Nodes ... 47
Subcircuit Preprocessing ... 47

Model Binning.. 47
Overview .. 47
Defining Binned Models ... 48
Example ... 48

Language Differences ... 49
Inline Comment .. 49
Unlabelled Device Parameters................................. 49
LOG() and PWR() .. 50

Customising Device Configuration 50
Overview .. 50
What does the Device Configuration File do?.......... 50
Creating a Device Configuration File 51
List of All Simulator Devices..................................... 52

Chapter 4 Analog Device Reference

Overview ... 53
Further Documentation.. 53
AC Table Lookup (including S-Parameters).................... 53

AC Table Notes.. 54
Arbitrary Source .. 54

Notes on Arbitrary Expression 55
Charge and Flux Devices... 56
Arbitrary Source Examples 56
PSpice and Hspice syntax 58

Bipolar Junction Transistor (SPICE Gummel Poon)........ 58
Notes.. 66

Bipolar Junction Transistor (VBIC without self heating) .. 66
Notes.. 70

Bipolar Junction Transistor (VBIC with self heating) 70
Notes.. 71

Bipolar Junction Transistor (MEXTRAM) 71
Bipolar Junction Transistor (HICUM)............................... 72
4

Table of Contents
Capacitor ...72
Current Controlled Current Source74

Polynomial Specification...75
Current Controlled Voltage Source..................................76
Current Source ..76
Diode - Level 1 and Level 3 ...77
Diode - Soft Recovery..81

Basic Equations..82
References ...82

GaAsFET...83
Inductor (Ideal)...84
Inductor (Saturable) ...85

Notes on the Jiles-Atherton model86
Notes on the non-hysteresis model87
Implementing Transformers......................................87
Plotting B-H curves...87
References ...87

Insulated Gate Bipolar Transistor88
Junction FET..89
Lossy Transmission Line ...92
MOSFET..93
BSIM3 MOSFETs ..100

Notes ..100
Version Selector ...100
Model Parameters ..101
Further Documentation...102
Process Binning..102

BSIM4 MOSFETs ..102
Notes ..102
Further Documentation...103
Process Binning..103

EKV MOSFETs..103
Notes ..103

HiSim HV MOSFET ...104
Notes ..104

MOSFET GMIN Implementation....................................104
PSP MOSFET..105
Resistor..107
Resistor - Hspice Compatible ..108

Resistance Calculation ...110
Capacitance Calculation...111
Temperature Scaling ..112
Flicker Noise...112
ACRESMOD Parameter ...112
5

Simulator Reference Manual
Making the Hspice Resistor the Default 113
CMC Resistor .. 113
S-domain Transfer Function Block 113

Description ... 114
Examples ... 115
The Laplace Expression... 118
Defining the Laplace Expression Using Coefficients119
Other Model Parameters.. 119
Limitations .. 119
The XSPICE S_XFER model 119

Subcircuit Instance .. 120
Transmission Line ... 120

Example ... 121
Voltage Controlled Current Source 121
Voltage Controlled Switch ... 122

Voltage Controlled Switch Notes............................ 122
Voltage Controlled Voltage Source 123
Voltage Source.. 123

Pulse Source.. 124
Piece-Wise Linear Source...................................... 126
PWL File Source .. 126
Sinusoidal Source .. 127
Exponential Source .. 128
Single Frequency FM ... 129
Noise Source.. 129
Extended PWL Source... 129

Mutual Inductor.. 131
Notes.. 132
Example ... 132

Verilog-HDL Interface (VSXA)....................................... 132
Overview .. 132
Analog Input Interface .. 135
Analog Output Interface ... 136
Data Vector Output .. 136
Module Cache .. 137

NXP Compact Models ... 138
Introduction .. 138
SIMKIT Devices ... 139
Notes on SIMKIT Models 142
PCM Devices ... 143
Notes on PCM Models ... 144
Documentation ... 144
6

Table of Contents
Chapter 5 Digital/Mixed Signal Device Reference

Digital Device Overview...145
Common Parameters ...145
Delays...146

And Gate..146
D-type Latch ..148
D-type Flip Flop ...150
Buffer ...152
Frequency Divider..153
Digital Initial Condition ...155
Digital Pulse...156
Digital Signal Source ...157
Inverter...160
JK Flip Flop..161
Arbitrary Logic Block..165
Nand Gate ...167
Nor Gate ..168
Open-Collector Buffer ..169
Open-Emitter Buffer...170
Or Gate ..171
Pulldown Resistor ..172
Pullup Resistor...173
Random Access Memory...173
Set-Reset Flip-Flop..174
SR Latch ..177
State Machine..179
Toggle Flip Flop ...181
Tri-State Buffer ..183
Exclusive NOR Gate..185
Exclusive OR Gate ..186
Analog-Digital Converter..187
Analog-Digital Interface Bridge190
Digital-Analog Converter..194
Digital-Analog Interface Bridge197
Controlled Digital Oscillator ...200
 Analog-Digital Schmitt Trigger202

Chapter 6 Command Reference

Overview..204
General Sweep Specification...205

Overview...205
Syntax...206
7

Simulator Reference Manual
Multi Step Analyses... 207
Overview .. 207
Syntax .. 207

.AC .. 209

.ALIAS ... 210

.DC .. 211

.FILE and .ENDF ... 213

.FUNC ... 214

.GLOBAL ... 215

.GRAPH... 215
Parameters... 215
Using Multiple .GRAPH Statements....................... 219
Creating X-Y Plots.. 219
Using .GRAPH in Subcircuits................................. 220
Using Expressions with .GRAPH 220
Plotting Spectra with .GRAPH................................ 220

.IC.. 221
Alternative Initial Condition Implementations 222

.INC ... 222

.KEEP.. 222
Option Settings... 224

.LOAD.. 226

.LIB .. 227
SIMetrix Native Form ... 227
HSPICE Form .. 228

.MODEL... 228

.NOCONV.. 232

.NODESET .. 232

.NOISE .. 233

.OP .. 236

.OPTIONS ... 237

.PARAM... 251

.POST_PROCESS .. 254

.PRINT... 254

.SENS.. 256

.SETSOA... 256
Examples ... 260

.SUBCKT and .ENDS.. 261

.TEMP ... 262

.TF ... 262

.TRACE ... 264

.TRAN.. 265
Real Time Noise Analysis ... 267
8

Table of Contents
Chapter 7 Monte Carlo Analysis

Overview..270
Specifying a Monte Carlo Run270
Specifying a Single Step Monte Carlo Sweep271
Log File ..272
Seeding the Random Number Generator273
Specifying Tolerances ...273

Overview...273
Distribution Functions ...273
Hspice Distribution Functions278
TOL, MATCH and LOT Device Parameters279
Tolerance Models ...280

Chapter 8 Convergence, Accuracy and Performance

Overview..282
DC Operating Point..282

Overview...282
Source and GMIN Stepping....................................283
Pseudo Transient Analysis284
Junction Initialised Iteration286
Using Nodesets ..286

Transient Analysis ...287
What Causes Non-convergence?...........................287
Fixes for Transient Non-convergence287

DC Sweep..288
DC Operating Point Algorithms......................................288

Junction Initialised Iteration289
Source Stepping ...289
Diagonal GMIN Stepping..289
Junction GMIN Stepping...290
Pseudo Transient Analysis290
Controlling DC Method Sequence291

Singular Matrix Errors ..291
Transient Analysis - ‘Time step too small’ Error291
Accuracy and Integration Methods292

A Simple Approach...292
Iteration Accuracy...292
Time Step Control...293
Accuracy of AC analyses..295
Summary of Tolerance Options..............................295
Integration Methods - METHOD option296

Using Multiple Core Systems...298
9

Simulator Reference Manual
Single Step Runs ... 298
Using Multiple Cores for Single Step Runs 298
Multi-core Multi-step Simulation 299

Matrix Solver ... 299

Chapter 9 Digital Simulation

Overview ... 300
Logic States... 300

State resolution table ... 301
Analog to Digital Interfaces ... 301

How A-D Bridges are Selected 303
Logic Families ... 303

Logic Family Model Parameters............................. 304
Logic Compatibility Tables 304
Logic Compatibility File Format.............................. 305
Supported Logic Families....................................... 306
Universal Logic Family ... 307
Internal Tables ... 307

Load Delay .. 307
Overview .. 307
Output Resistance.. 307
Input Delay ... 307
Wire Delay.. 308

Digital Model Libraries... 308
Using Third Party Libraries..................................... 308

Arbitrary Logic Block - User Defined Models................. 308
Overview .. 308
An Example.. 308
Example 2 - A Simple Multiplier 311
Example 3 - A ROM Lookup Table 311
Example 4 - D Type Flip Flop................................. 312
Device Definition - Netlist Entry & .MODEL Parameters
312
Language Definition - Overview 314
Language Definition - Constants and Names 314
Language Definition - Ports.................................... 314
Language Definition - Registers and Variables...... 316
Language Definition - Assignments 319
Language Definition - User and Device Values 322
Diagnostics: Trace File... 322

Mixed-mode Simulator - How it Works 323
Event Driven Digital Simulator 323
Interfacing to the Analog Simulator 324
10

Table of Contents
Enhancements over XSPICE...324
11

Simulator Reference Manual

12

Chapter 1 Introduction

Overview

This manual provides full reference documentation for the SIMetrix simulator.
Essentially the simulator receives a netlist as its input and creates a binary data file and
list file as its output. The netlist defines the circuit topology and also specifies the
analyses to be performed by the simulator. The netlist may directly include any device
models required or these may be automatically imported from a device model library.

The simulator may be operated in GUI mode or non-GUI mode. GUI mode is the
normal method of operation and requires the SIMetrix front end. In non-GUI mode the
simulator runs stand alone in a non-interactive fashion and may be set to run at low
priority in the background.

The SIMetrix Simulator - What is it?

The SIMetrix simulator core comprises a direct matrix analog simulator closely
coupled with an event driven gate-level digital simulator. This combination is often
described as mixed-mode or mixed-signal and has the ability to efficiently simulate
both analog and digital circuits together.

The core algorithms employed by the SIMetrix analog simulator are based on the
SPICE program developed by the CAD/IC group at the department of Electrical
Engineering and Computer Sciences, University of California at Berkeley. The digital
event driven simulator is derived from XSPICE developed by the Computer Science
and Information Technology Laboratory, Georgia Tech. Research Institute, Georgia
Institute of Technology.

What is in This Manual

This reference manual contains detailed descriptions of all simulator analysis modes
and supported devices.

Chapter 2 Running the Simulator
Chapter 2 Running the Simulator

Using the Simulator with the SIMetrix Schematic Editor

Full documentation on using the SIMetrix schematic editor for simulation is described
in the SIMetrix User's manual. However, just a few features of the schematic editor are
of particular importance for running the simulator and for convenience their
description is repeated here.

Adding Extra Netlist Lines

The analysis mode selected using the schematic editor's
Simulator | Choose Analysis... menu is stored in text form in the schematic's
simulator command window. If you wish, it is possible to edit this directly. Sometimes
this is quicker and easier than using the GUI especially for users who are familiar with
the command syntax.

Note that the text entered in the simulator command window and the Choose Analysis
dialog settings remain synchronised so you can freely switch between the two
methods.

To open the simulator command window, select the schematic then press the F11 key.
It has a toggle action, pressing it again will hide it. If you have already selected an
analysis mode using the Choose Analysis dialog, you will see the simulator statements
already present.

The window has a popup menu selected with the right key. The top item
Edit file at cursor will open a text editor with the file name pointed to by the cursor or
selected text item if there is one.

The simulator command window can be resized using the splitter bar between it and
the schematic drawing area.

You can add anything you like to this window not just simulator commands. The
contents are simply appended to the netlist before being presented to the simulator. So,
you can place .PARAM statements, device models, inductor coupling specifications,
.OPTION statements or simply comments. The Choose Analysis dialog will parse and
possibly modify analysis statements and some .OPTIONS settings but will leave
everything else intact.

Displaying Net and Pin Names

It is sometimes necessary to know the name used for a particular net on the schematic
to be referenced in a simulator statement (such as .NOISE) or for an arbitrary source
input. There are two approaches:

• Find out the default name generated by the schematic editor's netlist generator.
To do this, move the mouse cursor over the net of interest then observe the
netname in the status bar in the form “NET=???”.
13

Simulator Reference Manual
• Force a net name of your choice. For this, use a terminal or small terminal
symbol. These can be found under the Place | Connectors menu. After placing
on the schematic, select it then press F7 to edit its name. This name will be used
to name the net to which it is connected.

Editing Device Parameters

To use any of the additional parameters in a schematic, use the Parameters button in
the dialog box opened by F7 or the equivalent menu. For example you see this box
when editing a resistor

Pressing the Parameters button will open another dialog from which you can edit
parameter values:

You can also bring up this box directly using the right click menu
Edit Additional Parameters....
14

Chapter 2 Running the Simulator
Editing Literal Values - Using shift-F7

The above method is not infallible as it requires the schematic editor to know about the
device being edited. In some circumstances, this will require special properties to be
present on the symbol and these may have not been defined. (for example something to
tell the schematic what level a MOSFET is)

Another situation where the usual device editing methods may be unsuitable is when
you need to define a parameter as an expression.

In these situations you can use shift-F7. This will edit the device's literal value
including any model names exactly as it will be placed in the netlist. shift-F7 bypasses
all smart algorithms and presents you with the raw values and you must also supply
raw values. For example, here is what you might enter for a MOSFET referencing a
model called N1

N1 L={LL-2*EDGE} W={WW-2*EDGE}

Note the model name must be included.

Running in non-GUI Mode

Overview

The simulator can be run in a non-interactive non-GUI mode independently of the
front end. This is useful for running simulation ‘batches’ controlled by a proprietary
script or batch language such as shell scripts or DOS batch files.

Under Linux this allows a simulation to be run without an X-server.

Under Windows, the simulator will run as a ‘console mode’ application and no GUI
elements will be created.

When run in this mode, the simulator will read in the specified netlist, run the
simulation then close and return control to the calling program. It will generate a
binary data file and a list file.

Important Licensing Information

Non-GUI mode is only possible if you are using network licensing. This feature is not
available if you are using a portable (i.e. dongled) license. Please contact support if
you have a non-network license and wish to use non-GUI simulation mode.

This mode of operation is ‘counted’ for licensing purposes. This means you can only
run one non-GUI simulation process for each license issued even if all are run by a
single user on a single machine. By contrast, regular simulation initiated manually
through the GUI are not counted and any number of runs may be initiated on the same
machine by the same user for this purpose.

These restrictions have been made to limit exploitation of multiple core machines for
simulations run from non-SIMetrix environments.
15

Simulator Reference Manual
Syntax

The command syntax is as follows:

SIM [/config "config_location"] [/gui mode] [/check]
[/an "analysis_line"] [/list list_filename] [/options "options"] [/nolist]
[/lowPriority] [/nodata] [/k] [/extraline extra_line] netlist_file
[data_file]

config_location Location of file holding configuration settings. Configuration
settings include global options and global model library
locations. The value must be of the form:

PATH;pathname

pathname may use system symbolic path values such as
%EXEPATH%. See User’s Manual for details.

If not specified, the configuration settings will be taken from the
Base.sxprj file. See the User’s Manual for details on where this
file is located.

Alternatively, you can specify the location using a setting in the
startup.ini file. Add a value called SimConfig to the [Startup]
section and give it a value of:

PATH;pathname

The startup.ini file must be located in the same directory as the
SIMetrix executable binary. (SIMetrix.exe on Windows,
SIMetrix on Linux). See the User’s Manual for more
information on the startup.ini file.

Note that the /config switch if present must always appear
before the first argument to the command.

mode Mode of operation. Default = -1. Valid values are -1, 0, 1 and 2
but only -1 and 1 are meaningful for stand-alone operation. 0
and 2 are used when starting the simulator process from the
front end. -1 (same as omitting /gui) runs the simulator in
console mode with all messages output to the console or
terminal window. 1 enables GUI mode where the simulator runs
in a stand-alone mode but displays a graphical status box
showing messages and simulator progress. This mode is used by
the ‘asynchronous’ menus in the front end.

analysis_line If /an switch is specified, analysis_line specifies the analysis to
be performed and overrides all analysis lines specified in the
netlist.

list_filename Name of list file. Default is main netlist file name with
extension .OUT. Enclose path name in quotes if it contains
spaces.
16

Chapter 2 Running the Simulator
options List of options valid for .OPTIONS statement.

netlist_file File name of netlist.

data_file File to receive binary data output.

/check If specified, the netlist will be read in and parsed but no
simulation will be run. Used to check syntax

/nolist If specified, no list file will be created

/lowPriority If specified, the simulator will be run as a low priority process,
i.e. in the background. Recommended for long runs.

/nodata Only vectors explicitly specified using .KEEP or .PRINT will
be output to the binary file. Equivalent to ‘.KEEP /nov /noi
/nodig’ in the netlist.

/k If specified, the program will not finally terminate until the user
has pressed enter and a message to that effect will be displayed.
Under Windows, if the program is not called from the DOS
prompt but from another program, a console will be created for
receiving messages. The console will close when the program
exits sometimes before the user has had a chance to read the
messages. This switch delays the exit of the program and hence
the destruction of the console.

extra_line An additional line that will be appended to the netlist. This
permits simple customisation of the netlist. This should be
enclosed in double quotation marks if the line has spaces.

Aborting

Press cntrl-C - you will be asked to confirm. The simulation will be paused while
waiting for your response and will continue if you enter ‘No’. This is an effective
means of pausing the run if you need CPU cycles for another task, or you wish to copy
the data file. See “Reading Data” below.

Reading Data

A data file will be created for the simulation results as normal (see “The Binary Data
File” on page 25). You can read this file after the simulation is complete use the
SIMetrix menu File | Load Data... . You may also read this data file while the
simulation is running but you must pause the simulation first using cntrl-C.

Important: if you read the data file before the simulation is complete or aborted, the file
entries that provide the size of each vector will not have been filled. This means that
the waveform viewer will have to scan the whole file in order to establish the size of
the vectors. This could take a considerable time if the data file is large.

Configuration Settings

Configuration settings consist of a number of persistent global options as well as the
locations for installed model libraries.
17

Simulator Reference Manual
When the simulator is run in GUI mode, its configuration settings are controlled by the
front end and stored wherever the front end’s settings are stored. See the User's
Manual for more details.

The settings when run in non-GUI mode are stored in a configuration file which in fact
defaults to the same location as the default location for the front end’s settings. You can
change this location using the /config switch detailed above (page 15)

The format of the configuration file is:

[Options]
option_settings

[Models]
model_libraries

Where:

option_settings These are of the form name=value and specify
a number of global settings. Boolean values are
of the form name= without a value. If the entry
is present it is TRUE if absent it is FALSE.
Available global settings are detailed below.

model_libraries A list of entries specifying search locations for
model libraries. These are of the form
name=value where name is a string and value
is a search location. The string used for name
is arbitrary but must be unique. Entries are
sorted alphabetically according to the name
and used to determine the search order. value is
a path name and may contain wildcards (i.e. '*'
and '?')
18

Chapter 2 Running the Simulator
Global Settings

Data Buffering

The simulator buffers data before writing it to disk. By doing so the binary data file can
be organised more efficiently allowing data to be recovered from it quickly. There is a
relationship between buffer size and read in time as illustrated by the following table.
This shows the time taken to read in a 14MByte vector from a 1GByte data file with
the system disk cache cleared. The tests were performed with three different buffer
sizes on two different systems. One system was an old notebook computer with an IDE
disk system. The other was a machine with a high performance SCSI Ultra 320 disk.

Name Type Default Description

NoStopOnUnknownParam String WARN Specifies action to be
taken in the event of an
unknown parameter
being encountered in a
.MODEL statement.
Choices are:

TRUE: No action
taken, simulation
continues normally
FALSE: An error will be
raised and the
simulation will abort
WARN: A warning will
be displayed but the
simulation will continue

This will be overridden
by a .OPTIONS setting
of the same name. See
page 245

MaxVectorBufferSize Numeric 32760 See “Data Buffering”
below

TotalVectorBufferSize Numeric Available RAM/10 See “Data Buffering”
below

TempDataDir String %STARTDIR% Location of temporary
binary data file if
data_file is not
specified on command
line

LibraryDiagnostics String Full Controls output of
messages relating to
model library search.
Specify None to
disable
19

Simulator Reference Manual
Note that the buffer size referred to in the above table is for each vector.

By default, the simulator won't allocate more than 10% of your system RAM to vector
buffers. Clearly if you are running a large circuit and saving many vectors, the buffer
sizes could reduce to levels that would make data retrieval very slow. In this case you
may wish to consider increasing the memory that is allowed for these buffers. Two
configuration settings control the vector buffering. These are:

• MaxVectorBufferSize. This sets the maximum size that will be used for any
individual vector. The default is 32768 bytes. If you have a high performance
SCSI disk system, you may benefit from increasing this value

• TotalVectorBufferSize. This sets the maximum amount of memory in bytes used
for all buffers. It defaults to a value equal to 10% of your system RAM. This is
usually sufficient for most applications but if you are simulating a very large
circuit and have sufficient RAM you may like to increase this value

The disk will not be written to until the buffers are full. With an all analog circuit all
the buffers reach their full state at the same time so they all get written to disk at the
same time. If you have 2G of RAM and are simulating a large circuit, approximately
200M of data will be written to the disk at regular intervals. This will result in a pause
in the simulation coupled with a great deal of disk activity.

Note that both MaxVectorBufferSize and TotalVectorBufferSize may be set from the
front end using the Set command. See the User’s Manual for details.

Netlist Format

The SIMetrix netlist format follows the general format used for all SPICE and SPICE
compatible simulators. However, with so many SPICE derivatives and with two
significantly different versions of SPICE itself (SPICE 2 and SPICE 3) it is not
possible to define a standard SPICE format. SIMetrix has been developed to be as
compatible as possible with model libraries that can be obtained from external sources.
For discrete devices, models are usually SPICE 2 compatible but some use extensions
originally developed for PSpice. IC designers usually receive model files from
fabrication companies and these are available for a variety of simulators usually
including Hspice. SIMetrix is compatible with all of these but simultaneous
compatibility with all formats is not technically possible due to a small number of
syntax details - such as the character used for in line comments. To overcome these

System Buffer size Read time

IDE 32768 (default) 8.1 secs

250K 3.1 secs

1 Meg 2.8 secs

Ultra 320 32768 (default) 4.1 secs

250K 0.75 secs

1Meg 0.23 secs
20

Chapter 2 Running the Simulator
minor difficulties, a language declaration can be placed at the top of the netlist and any
file included using .INC (page 222) or the Hspice variant of .LIB (page 227). This is
described in the following sections.

File Format

A complete netlist consists of:

• A title line

• Optional language declaration

• Device lines

• Statement lines

• Comment lines

The title line must be the first line of the file and may be empty. The remaining lines -
with some exceptions - may be placed in any order

All other lines are defined by their first non-whitespace character as follows.

• Statement lines begin with a period: '.'

• Comment lines begin with an asterix: '*'

• Device lines begin with a letter

A line is usually terminated with a new line character but may be continued using the
'+' continuation character. So if the first non-whitespace character is a '+' the line will
be considered to be an extension of the previous line. SPICE requires the '+' to be the
first character, SIMetrix allows whitespace (space or tab) to precede it.

Language Declaration

SIMetrix is able to read PSpice, Hspice and native SIMetrix netlists, but in some
cases needs to be instructed what format netlist it is reading. Currently there are three
areas where simultaneous compatibility has not been possible. These are:

• Inline comment character.

• Unlabelled device parameters

• The meaning of LOG() and PWR() functions

SIMetrix can be instructed to use any of the three languages by using the language
declaration. This is one of:

*#SIMETRIX
*#HSPICE
*#PSPICE

The language declaration must be placed at the top of the file immediately below the
title line. It can also be placed in files referenced using .INC or the HSPICE version
of .LIB in which case it will apply only to that file and any others that it calls. A
language declaration placed anywhere else in a file will be ignored.

For details see “Language Differences” on page 49.
21

Simulator Reference Manual
The *#SIMETRIX language declaration can also be supplied with a parameter to
specify the separator letter used for devices. See “Device Lines” section below for
details.

Comments

Any line other than a language declaration beginning with a '*' is defined as a comment
and will be ignored. Also anything between a semi-colon ';' ('$' in HSPICE mode) and
the end of the line will be treated as comment and will also be ignored. Some SPICE
simulators require the '*' character to be the first character of the line. SIMetrix allows
it to be preceded by white space (spaces and tabs).

Device Lines

Device lines usually follow the following basic form but each type of device tends to
have its own nuances:

Name nodelist value [parameters]

value may be an actual number e.g. in the case of passive components such as resistors,
or it may be a model name in the case of semiconductor devices such as bipolar
transistors. Models are defined using a .MODEL statement line.

nodelist is a list of netnames. The number and order of these is device dependent. The
netname itself may consist of any collection of non-control ASCII characters except
whitespace and '.'. All other ASCII characters are accepted although it is suggested that
the following characters are avoided if possible:

\ " % & + - * / ^ < > [] ' @ { }

If any of these characters are used in a netname, a special syntax will be needed to plot
any signal voltage on that net. This is explained in “Output Data Names” on page 26.
In addition the characters ‘[‘, ‘]’, ‘%’, ‘!’ and ‘~’ have a special meaning when used
with XSPICE devices and therefore should be avoided at all times.

The name is the circuit reference of the device. The first letter of this name determines
the type of device as shown in the table below.

The Pin Names column in the following table is relevant to the vector name used for
values of device pin current. See “Output Data Names” on page 26.

Letter Number
of pins

Device Manual
Page

Pin Names

A Any XSPICE devices depends on
device

B 2 Arbitrary source 54 P, N

C 2 Capacitor 72 P, N
22

Chapter 2 Running the Simulator
To remove the naming restriction that this system imposes, SIMetrix supports an
extension to the above to allow the user to use any name for all devices. If the device
letter is followed by a dollar '$' symbol (by default but can be changed - see below), the
remainder of the name following the '$' will be used as the device name. E.g.:

D 2 Diode 77 P, N

E 4 Voltage controlled voltage
source

123 P, N, CP, CN

F 2 Current controlled current
source

74 P, N

G 4 Voltage controlled current
source

121 P, N, CP, CN

H 2 Current controlled voltage
source

76 P, N

I 2 Fixed current source 76 P, N

J 3 JFET 89 D, G, S

K 0 Coupling for inductors 131

L 2 Inductor 84 P, N

M 4 MOSFET 93 D, G, S, B

N - Not used

O 4 Lossy transmission line 92 P1, N1, P2, N2

P - Not used

Q 3-5 Bipolar transistor 58 C, B, E, S, DT

R 2 Resistor 107 P, N

S 4 Voltage controlled switch 122 P, N, CP, CN

T 4 Lossless transmission line 120 P1, N1, P2, N2

U Any VSXA devices (Verilog-HDL
interface), Verilog-A devices,
AC Table device

V 2 Voltage source 123 P, N

W - Not used

X Any Subcircuit 120

Y - Not used

Z 3 GaAs FET
IGBT

83
88

D, G, S
C, G, E

Letter Number
of pins

Device Manual
Page

Pin Names
23

Simulator Reference Manual
Q$TR23

will define a bipolar transistor with the name TR23. All output generated by the
simulator will refer to TR23 not Q$TR23.

The above mechanism can be disabled and also the character can be changed by adding
a parameter to the language declaration (see page 21). To disable, add this to the top of
the netlist:

*#SIMETRIX sep=none

To change the character use:

*#SIMETRIX sep=character

character must be a single letter, anything else will be ignored. Although any character
will be accepted it should clearly not be alpha-numeric.

The above mechanism will also be disabled if HSPICE or PSPICE languages are
specified.

Simulator Statements

Instructions to the simulator other than device definitions and comments are referred to
as statements and always begin with a period '.' .

Full documentation for SIMetrix statements see “Command Reference” on page 204

Simulator Output

The List File

SIMetrix produces a list file by default. This receives all text output except for the
Monte Carlo log. This includes operating point results, model parameters, noise
analysis results, sensitivity analysis results, pole-zero analysis results and tabulated
vectors specified by .PRINT.

The list file is generated in the same directory as the netlist. It has the same name as the
netlist but with the extension .OUT.

There are a number of options that control the list file output.
24

Chapter 2 Running the Simulator
The Binary Data File

The simulation data is stored in a binary data file. The format is proprietary to
SIMetrix and is not compatible with SPICE ‘raw’ files.

The name and location of the binary file depends on configuration settings and in what
mode the simulator is run. Usually, the file is located in the directory specified by the
TEMPDATADIR configuration setting (see page 17) and is named according to the
analysis type and appended with the extension .sxdat. E.g.tran1.sxdat, ac2.sxdat,
dc3.sxdat etc. The name and location can be overridden at the program command line
if operated in non-GUI mode or at the front end Run command line if run in GUI
mode.

Only the SIMetrix front end can read the simulator's binary data file. When run in GUI
mode, the file is automatically loaded and in fact it is not usually necessary to know
anything about it except perhaps when it grows very large and fills up your disk. If the
simulator is run in non-GUI mode, it becomes necessary to explicitly load the data into
the front end when the run is complete. This can be done with the command shell menu
File | Data | Load…. After the data is loaded, the results can be plotted in the usual
manner. See the User's Manual for further details.

Option name Description

PARAMLOG Valid values:

Full All instance and model parameter values reported
Given All user specified model parameters and

parameterised instance parameters
Brief Parameterised model and instance parameters
None None

Default = Given

EXPAND Flag. If specified, the netlist with all sub-circuits expanded will
be output to the list file

EXPANDFILE String. If specified the expand netlist will be output to the
specified file rather than the list file

NOMOD Same as PARAMLOG=none. Model parameters will not be
output

WIDTH Page width in number of characters. (The list file is formatted
assuming that it will be read or printed using a fixed width font
such as Courier.) The default is 80 but any value may be used
not just 80 and 132 as in SPICE 2.

OPINFO If set DC operating point info file is created for all analyses
(except .SENS). Normally it is created only for .OP analyses
25

Simulator Reference Manual
Output Data Names

For transient, DC and AC analyses, SIMetrix calculates and stores the circuit’s node
voltages and device pin currents and these are all given unique names. If using probing
techniques with the front end's schematic editor you don't usually need to know
anything about the names used. However there are situations where it is necessary or
helpful to know how these names are derived. An example is when compiling an
expression relating voltages and currents to be used in a .PRINT statement. Another is
when plotting results created by simulating a netlist that was not generated using the
schematic editor. The names used are documented in the following notes.

Top Level Node Voltages

The vector names used for node voltages at the top level (i.e. not in a subcircuit) are
simply the name of the node used in the netlist.

Subcircuit Node Voltages

For nodes within a subcircuit, the name is prefixed with the subcircuit reference and a
'.'. For example:

X1 N1 N2 N3 SubName
X2 N4 N5 N6 SubName

.SUBCKT 1 2 3 SubName
X3 N1 2 N3 SubName2
R1 VIN 0 1k
...
.ENDS

.SUBCKT 1 2 3 SubName2
V1 VCC 0 5
...
.ENDS

The internal node VIN in definition SubName referenced by X1 would be called
X1.VIN. The same node referenced by X2 would be called X2.VIN. The node VCC
defined in subcircuit SubName2 would be named X1.X3.VCC and X2.X3.VCC for X1
and X2 respectively.

Nodes with Non-standard Names

A non-standard node name is one that begins with a digit or which contains one or
more of the characters:

\ " % & + - * / ^ < > [] ' @ { }

These are legal but introduce problems when accessing the voltage data that they carry.
The above characters can be used in arithmetic expressions so cause a conflict if used
as a node name. In order to access the voltage data on a node so named, use the Vec()
function:

Vec('node_name')
26

Chapter 2 Running the Simulator
Example with .PRINT and node called V+

.PRINT TRAN {Vec('V+')}

A similar syntax is required when using the front end plotting commands.

Device Pin Currents

Device pin currents are named in the following form:

device_name#pin_name

For primitive devices (i.e. not sub-circuits) pin_name must comply with the table on
page 22. For example the current into the collector of Q23 would be Q23#c.

The pin names for sub-circuits depend on whether the pinnames: specifier (see
“Subcircuit Instance” on page 120) is included in the netlist entry for the device. If it is
the pin current name will be the name listed after pinnames:. If it isn't then they are
numbered in sequence starting from 1. The order is the same as the order they appear
in the netlist device line. For example, if the subcircuit line is:

X$U10 N1 N2 N3 N4 N5 LM324 pinnames: VINP VINN VP VN VOUT

The current into the last pin (connected to N5) would be U10#VOUT

(Note that 'X$' is stripped off as explained above - page 22).

If the netlist line is:

X$U10 N1 N2 N3 N4 N5 LM324

The same current would be U10#5

Internal Device Values

Some devices have internal nodes or sources and the voltages or currents associated
with these may be output by the simulator. These are named in a similar manner to pin
currents i.e.

device_name#internal_name

The internal_name depends on the device. For example, bipolar transistors create an
internal node for each terminal that specifies a corresponding resistance parameter. So
if the RE parameter is specified an internal node will be created called emitter.

Note that internal device values are only output if explicitly enabled using the “.KEEP
/INTERNAL” statement. See “.KEEP” on page 222

Data Handling - Controlling Data Saved

As explained in “The Binary Data File” on page 25, all data is saved to a binary disk
file. By default, all signals visible in a schematic are saved. That is all signals at the top
27

Simulator Reference Manual
level of a hierarchy and in all child schematics are saved. Signals inside subcircuits
that were not generated by a hierarchical schematic are not saved.

SIMetrix has comprehensive features for changing exactly what data is saved. Some
simulations can generate huge amounts of data and with multi-core multi-step
simulations, the rate at which the data is created can exceed the performance of the
disk system. It is therefore desirable in some cases to reduce the amount of data saved.

For simulations run from the user interface, some of the data handling features are
available through the GUI. See the User’s Manual Chapter 5, Data Handling and
Keeps.

More comprehensive features are available using .KEEP and .OPTIONS. See “.KEEP”
on page 222 for full details.
28

Chapter 3 Simulator Devices
Chapter 3 Simulator Devices

Overview

This chapter is an introduction to the “Analog Device Reference” on page 53 and the
“Digital/Mixed Signal Device Reference” on page 145.

The device reference chapters describe all simulator devices at the netlist level. The
netlist consists of a list of component definitions, along with simulator commands,
which the simulator can understand. Simple components, such as resistors just need a
value to define them. Other more complicated devices such as transistors need a
number of parameters to describe their characteristics.

The device references includes details of all device and model parameters. Using the
schematic editor and model library you may not often need to read this section. Some
of the devices, however, have advanced options not directly supported by the user
interface. For example, many devices allow a local temperature to be specified. This
requires the component value to be appended with TEMP=…. This device parameter
and others are documented here.

Note that many parts either supplied with SIMetrix or available from component
manufacturers are implemented as subcircuits. These are circuit designs to simulate the
behaviour of high level devices such as opamps. SIMetrix (and all other SPICE
simulators) do not have an opamp device built in but use these macro models instead.
Full documentation for these devices is beyond the scope of this manual but can
sometimes be obtained from their suppliers.

Using XSPICE Devices

Some devices are implemented as part of the XSPICE ‘code modelling’ framework.
This framework introduces some new features at the netlist level not supported by
standard SPICE devices. These new features are described in this section.

All but one of these devices that use this framework are digital or mixed signal devices
and the reference for these can be found at “Digital/Mixed Signal Device Reference”
on page 145.

The exception is the “S-domain Transfer Function Block” (page 113) which is a pure
analog part.

Vector Connections

Some models feature an arbitrary number of inputs or/and outputs. For example, an
AND gate can have any number of inputs. It would be inflexible to have a separate
model for every configuration of AND gate so a method of grouping connections
together has been devised. These are known as vector connections. Vector connections
are enclosed in square brackets. E.g. the netlist entry for an AND gate is:

Axxxx [in_0 in_1 .. in_n] out model_name
29

Simulator Reference Manual
The pins in_0 in_1 to in_n form a single vector connection. Any number of pins may
be placed inside the square brackets, in fact the same model may be used for devices
with different numbers of inputs.

Some devices have a minimum and/or maximum number of pins that may be used in a
vector connection. This is known as vector bounds and if they apply will be listed in
the vector bounds column of the Connection Details table provided with every device
definition.

Connection Types

In the device references that follow, each has a table titled Connection Details. Each
table has a “Type” column and some have an “Allowed types” column. The type
referred to here is the type of electrical connection e.g. voltage, current, differential or
single-ended. Some devices allow some or all of their connections to be specified with
a range of types. For example, the analog-digital converter described on page 187 has a
single ended voltage input by default. However, using a simple modification to the
netlist entry, an ADC can be specified with a differential voltage input or even a
differential current. Changing the type of connection involves no changes to the
.MODEL statement, only to the netlist entry.

The following table lists all the available types. The modifier is the text used to alter a
connection type at the netlist level. This is explained below

With the models supplied with SIMetrix, only the first four in the above table are ever
offered as options. The others are used but are always compulsory, and an
understanding of their meaning is not necessary to make full use the system.

As well as type, all connections also have a flow referring to the direction of the signal
flow. This can be in, out or inout. Voltage, current and digital connections may be in or
out while the conductance and resistance connections may only be inout. Voltage
inputs are always open circuit, current inputs are always short circuit, voltage outputs

Description Modifier

Single ended voltage %v

Single ended current %i

Differential voltage %vd

Differential current %id

Digital %d

Grounded conductance (voltage input current output) %g

Grounded resistance (current input, voltage output) %h

Differential conductance (voltage input current output) %gd

Differential resistance (voltage input current output) %hd
30

Chapter 3 Simulator Devices
always have zero output impedance and current outputs always have infinite output
impedance.

The conductance connections are a combined voltage input and current output
connected in parallel. If the output is made to be proportional to the input, the
connection would be a conductor with a constant of proportionality equal to its
conductance, hence the name.

Similarly, the resistance connections are a combined current input and voltage output
connected in series. If the output is made to be proportional to the input, the connection
would be a resistor with a constant of proportionality equal to its resistance.

Changing Connection Type

If a model allows one or more of its connections to be given a different type, this can
be done by preceding the connection entry with the appropriate modifier listed in the
table above. For example if you wish to specify a 4 bit ADC with a differential voltage
input, the netlist entry would be something like:

A1 %vd ANALOG_INP ANALOG_INN CLOCK_IN [DATA_OUT_0
DATA_OUT_1 DATA_OUT_2 DATA_OUT_3] DATA_VALID ADC_4

Using Expressions

Overview

Expressions consist of arithmetic operators, functions, variables and constants and may
be employed in the following locations:

• As device parameters

• As model parameters

• To define a variable (see “.PARAM” on page 251) which can itself be used in an
expression

• As the governing expression used for arbitrary sources (see page 54).

They have a wide range of uses. For example:

• To define a number of device or model parameters that depend on some common
characteristic. This could be a circuit specification such as the cut-off frequency
of a filter or maybe a physical characteristic to define a device model.

• To define tolerances used in Monte Carlo analyses.

• Used with an arbitrary source, to define a non-linear device.

Using Expressions for Device Parameters

Device or instance parameters are placed on the device line. For example the length
parameter of a MOSFET, L, is a device parameter. A MOSFET line with constant
parameters might be:

M1 1 2 3 4 MOS1 L=1u W=2u
31

Simulator Reference Manual
L and W could be replaced by expressions. For example

M1 1 2 3 4 MOS1 L={LL-2*EDGE} W={WW-2*EDGE}

Device parameter expressions must usually be enclosed with either single quotation
marks (') double quotation marks (") or braces ('{' and '}'). The expression need not
be so enclosed if it consists of a single variable. For example:

.PARAM LL=2u WW=1u
M1 1 2 3 4 MOS1 L=LL W=WW

Using Expressions for Model Parameters

The rules for using expressions for device parameters also apply to model parameters.
E.g.

.MODEL N1 NPN IS=is BF={beta*1.3}

Expression Syntax

The expression describing an arbitrary source consists of the following elements:

• Circuit variables

• Parameters

• Constants.

• Operators

• Functions

• Look up tables

These are described in the following sections

Circuit Variables

Circuit variables may only be used in expressions used to define arbitrary sources and
to define variables that themselves are accessed only in arbitrary source expressions.

Circuit variables allow an expression to reference voltages and currents in any part of
the circuit being simulated.

Voltages are of the form:

V(node_name1)

OR

V(node_name1, node_name2)

Where node_name1 and node_name2 are the name of the node carrying the voltage of
interest. The second form above returns the difference between the voltages on
node_name1 and node_name2. If using the schematic editor nodenames are normally
32

Chapter 3 Simulator Devices
allocated by the netlist generator. For information on how to display and edit the
schematic's node names, refer to “Displaying Net and Pin Names” on page 13.

Currents are of the form:

I(source_name)

Where source_name is the name of a voltage source carrying the current of interest.
The source may be a fixed voltage source, a current controlled voltage source, a
voltage controlled voltage source or an arbitrary voltage source. It is legal for an
expression used in an arbitrary source to reference itself e.g.:

B1 n1 n2 V=100*I(B1)

Implements a 100 ohm resistor.

Parameters

These are defined using the .PARAM statement. See page 251 for details. For example

.PARAM res=100
B1 n1 n2 V=res*I(B1)

Also implements a 100 ohm resistor.

Circuit variables may be used .PARAM statements, for example:

.PARAM VMult = { V(a) * V(b) }
B1 1 2 V = Vmult + V(c)

Parameters that use circuit variables may only be used in places where circuit variables
themselves are allowed. So, they can be used in arbitrary sources and they may be used
to define the resistance of an Hspice style resistor which allows voltage and current
dependence. (See “Resistor - Hspice Compatible” on page 108). They may also of
course be used to define further parameters as long as they too comply with the above
condition.

Built-in Parameters

A number of parameter names are assigned by the simulator. These are:
33

Simulator Reference Manual
Constants

Apart from simple numeric values, arbitrary expressions may also contain the
following built-in constants:

If the simulator is run from the front end in GUI mode, it is also possible to access
variables defined on the Command Shell command line or in a script. The variable
must be global and enclosed in braces. E.g.

B1 n1 n2 V = V(n3, n3) * { global:amp_gain }

amp_gain could be defined in a script using the LET command. E.g. “Let
global:amp_gain = 100”

Operators

These are listed below and are listed in order of precedence. Precedence controls the
order of evaluation. So 3*4 + 5*6 = (3*4) + (5*6) = 42 and 3+4*5+6 = 3 + (4*5) + 6 =
29 as '*' has higher precedence than '+'.

Parameter
name

Description

TIME Resolves to time for transient analysis. Resolves to 0
otherwise including during the pseudo transient operation
point algorithm. Note that this may only be used in an
arbitrary source expression

TEMP Resolves to current circuit temperature in Celsius

HERTZ Resolves to frequency during AC sweep and zero in other
analysis modes

PTARAMP Resolves to value of ramp during pseudo transient operating
point algorithm if used in arbitrary source expression.
Otherwise this value resolves to 1.

Constant
name

Value Description

PI 3.14159265358979323846 

E 2.71828182845904523536 e

TRUE 1.0

FALSE 0.0

ECHARGE 1.6021918e-19 Charge on an electron in
coulombs

BOLTZ 1.3806226e-23 Boltzmann's constant
34

Chapter 3 Simulator Devices
Comparison, Equality and Logical Operators

These are Boolean in nature either accepting or returning Boolean values or both. A
Boolean value is either TRUE or FALSE. FALSE is defined as equal to zero and
TRUE is defined as not equal to zero. So, the comparison and equality operators return
1.0 if the result of the operation is true otherwise they return 0.0.

The arguments to equality operators should always be expressions that can be
guaranteed to have an exact value e.g. a Boolean expression or the return value from
functions such as SGN. The == operator, for example, will return TRUE only if both
arguments are exactly equal. So the following should never be used:

v(n1)==5.0

v(n1) may not ever be exactly 5.0. It may be 4.9999999999 or 5.00000000001 but only
by chance will it be 5.0.

These operators are intended to be used with the IF() function described below.

Digital Operators

These are the operators '&', '|' and '~'. These were introduced in old SIMetrix version as
a simple means of implementing digital gates in the analog domain. Their function has
largely been superseded by gates in the event driven simulator but they are
nevertheless still supported.

Although they are used in a digital manner the functions implemented by these
operators are continuous in nature. They are defined as follows:

Operator Description

~ ! - Digital NOT, Logical NOT, Unary minus

^ or ** Raise to power.

*, / Multiply, divide

+, - Plus, minus

>=, <=, > < Comparison operators

==, != or <> Equal, not equal

& Digital AND (see below)

| Digital OR (see below)

&& Logical AND

|| Logical OR

test ? true_expr :
false_expr

Ternary conditional expression (see below)
35

Simulator Reference Manual
Where:

vth = upper input threshold
vtl = lower input threshold
vh = output high
vl = output low

These values default to 2.2, 2.1, 5 and 0 respectively. These values are typical for high
speed CMOS logic (74HC family). They can be changed with four simulator options
set by the .OPTIONS simulator statement. These are respectively,
LOGICTHRESHHIGH, LOGICTHRESHLOW, LOGICHIGH, LOGICLOW

To change the lower input threshold to 1.9, add the following line to the netlist:

.OPTIONS LOGICTHRESHLOW=1.9

To find out how to add additional lines to the netlist when using the schematic editor,
refer to “Adding Extra Netlist Lines” on page 13.

Ternary Conditional Expression

This is of the form:

test_expression ? true_expression : false_expression

The value returned will be true_expression if test_expression resolves to a non-zero
value, otherwise the return value will be false_expression. This is functionally the
same as the IF() function described in the functions table below.

Expression Condition Result

out = x & y x<vtl OR y<vtl
x>vth AND y>vth
x>vth AND vth>y>vtl
vtl<x< vth AND y>vth
vtl<x< vth AND vth>y>vtl

out = vl
out = vh
out = (y-vtl)*(vh-vl)/(vth-vtl)+vl
out = (x-vtl)*(vh-vl)/(vth-vtl)+vl
out = (y-vtl)*(x-vtl)*(vh-vl)/(vth-
vtl)2+vl

out = x|y x<vtl AND y<vtl
x>vth OR y>vth
x<vtl AND vth>y>vtl
vtl<x< vth AND y<vtl
vtl<x< vth AND vth>y>vtl

out = vl
out = vh
out = vh-(vth-y)*(vh-vl)/(vth-vtl)
out = vh-(vth-x)*(vh-vl)/(vth-vtl)
out = vh-(vth-y)*(vth-x)*(vh-vl)/
(vth-vtl)2

out = ~x x<vtl
x>vth
vtl<x< vth

out = vh
out = vl
out = (vth-x)/(vth-vtl)*(vh-vl)+vl
36

Chapter 3 Simulator Devices
Functions

Function Description

ABS(x) Magnitude of x. if x>=0 result=x otherwise result=-x

ACOS(x),
ARCCOS(x)

Arc cosine. Result is in radians

ACOSH(x) Inverse COSH

ASIN(x),
ARCSIN(x)

Arc sine. Result is in radians

ASINH(x) Inverse SINH

ATAN(x),
ARCTAN(x)

Arc tangent. Result is in radians

ATAN2(x,y) =ATAN(x/y). Valid if y=0. Result in radians

ATANH(x) Inverse TANH

COS(x) Cosine of x in radians

COSH(x) Hyperbolic cosine

DDT(x) Differential of x with respect to time

EXP(x) ex

FLOOR(x),
INT(x)

Next lowest integer of x.

IF(cond, x, y[,
maxslew])

if cond is TRUE result=x else result=y. If maxslew is greater
than 0, the rate of change of the result will be slew rate
controlled. See “IF() Function” below

IFF(cond, x, y[,
maxslew])

As IF(cond, x, y, maxslew)

LIMIT(x, lo, hi) if x<lo result=lo else if x>hi result=hi else result=x

LIMITS(x, lo, hi,
sharp)

As LIMIT but with smoothed corners. The ‘sharp’
parameter defines the abruptness of the transition. A
higher number gives a sharper response. LIMITS gives
better convergence than LIMIT. See “LIMITS() Function”
below

LN(x) Log to base e of x. If x<10-100 result=-230.2585093

LOG(x) Log to base 10 of x. If x<10-100 result=-100

LOG10(x) Log to base 10 of x. If x<10-100 result=-100

MAX(x, y) Returns larger of x and y

MIN(x,y) Returns smaller of x and y

PWR(x,y) |x|y

PWRS(x,y) if x>=0 |x|y else -|x|y

SDT(x) Integral of x with respect to time
37

Simulator Reference Manual
Monte Carlo Distribution Functions

To specify Monte Carlo tolerance for a model parameter, use an expression containing
one of the following 12 functions:

A full discussion on the use of Monte Carlo distribution functions is given in
“Specifying Tolerances” on page 273

IF() Function

IF(condition, true-value, false-value[, max-slew])

The result is:

SGN(X) If x>0 result = 1 else if x<0 result = -1 else result = 0

SIN(x) Sine of x in radians

SINH(x) Hyperbolic sine

SQRT(x) if x>=0 x else -x

STP(x) If x<=0 result = 0 else result = 1

TAN(x) Tangent of x in radians

TANH(x) Hyperbolic tangent

U(x) as STP(x)

URAMP(x) if x<0 result =0 else result = x

Name Distribution Lot?

GAUSS Gaussian No

GAUSSL Gaussian Yes

UNIF Uniform No

UNIFL Uniform Yes

WC Worst case No

WCL Worst case Yes

GAUSSE Gaussian logarithmic No

GAUSSEL Gaussian logarithmic Yes

UNIFE Uniform logarithmic No

UNIFEL Uniform logarithmic Yes

WCE Worst case logarithmic No

WCEL Worst case logarithmic Yes

Function Description
38

Chapter 3 Simulator Devices
if condition is non-zero result is true-value
else result is false-value

If max-slew is present and greater than zero, the result will be slew-rate limited in both
positive and negative directions to the value of max-slew.

In some situations, for example if true-value and false-value are constants, the result of
this function will be discontinuous when condition changes state. This can lead to non-
convergence as there is no lower bound on the time-step. In these cases a max-slew
parameter can be included. This will limit the slew rate so providing a controlled
transition from the true-value to the false-value and vice-versa.

If the option setting DISCONTINUOUSIFSLEWRATE is non-zero, SIMetrix will
automatically apply a max-slew parameter to all occurrences of the IF() function if
both true-value and false-value are constants. This provides a convenient way of
resolving convergence issues with third-party models that make extensive use of
discontinuous if expressions. Note that the DISCONTINUOUSIFSLEWRATE option
is also applied to conditional expressions using the C-style condition ? true-value :
false-value syntax.

LIMITS() Function

LIMITS(x, low, high, sharp)

The LIMITS() function is similar to LIMIT but provides a smooth response at the
corners which leads to better convergence behaviour. The behaviour is shown below
39

Simulator Reference Manual
The LIMITS function follows this equation:

LIMITS(x, low, high, sharp) = 0.5*((ln(cosh(v1))-ln(cosh(v2)))/v3 +(low+high))

Where
v1 = sharp/(high-low)*(x-low)
v2 = sharp/(high-low)*(x-high)
v3 = sharp/(high-low)

Look-up Tables

Expressions may contain any number of look-up tables. This allows a transfer function
of a device to be specified according to - say - measured values without having to
obtain a mathematical equation. Look-up tables are specified in terms of x, y value
pairs which describe a piece-wise linear transfer function.

Look up tables are of the form:

Time/uSecs 50uSecs/div

-50 0 50 100 150 200 250 300

V

-0

1

2

3

4

5

LIMITS with sharp=10

LIMIT
40

Chapter 3 Simulator Devices
TABLE[xy_pairs](input_expression)

Where:
xy_pairs A sequence of comma separated pairs of constant values that

define the input and output values of the table. For each pair, the
first value is the x or input value and the second is the y or
output value. Only explicit numeric constants may be used.
Even internal constants such as PI may not be used.

input_expression Expression defining the input or x values of the table.

Example

The following arbitrary source definition implements a soft limiting function

B1 n2 n3 V=table[-10, -5, -5, -4, -4, -3.5, -3, -3, 3, 3, 4,
3.5, 5, 4, 10, 5](v(N1))

and has the following transfer function:

It is possible to assign expressions to component values which are evaluated when the
circuit is simulated. This has a number of uses. For example you might have a filter
design for which several component values affect the roll off frequency. Rather than
recalculate and change each component every time you wish to change the roll of
frequency it is possible to enter the formula for the component's value in terms of this
frequency.

v1/V 5V/div

-20 -15 -10 -5 0 5 10 15

:b
1_

p
/ V

-4

-2

0

2

4

41

Simulator Reference Manual
Example

The above circuit is that of a two pole low-pass filter. C1 is fixed and R1=R2. The
design equations are:

R1=R2=2/(2*pi*f0*C1*alpha)
C2=C1*alpha*alpha/4

where f0 is the cut off frequency and alpha is the damping factor.

The complete netlist for the above circuit is:

V1 V1_P 0 AC 1 0
C2 0 R1_P {C1*alpha*alpha/4}
C1 VOUT R1_N {C1}
E1 VOUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N V1_P {2/(2*pi*f0*C1*alpha)}

Before running the above circuit you must assign values to the variables. This can be
done by one of three methods:

• With the .PARAM statement placed in the netlist.

• With Let command from the command line or from a script. (If using a script you
must prefix the parameter names with global:)

• By sweeping the value with using parameter mode of a swept analysis (page 205)
or multi-step analysis (page 207).

Expressions for device values must be entered enclosed in curly braces ('{' and '}').

Suppose we wish a 1kHz roll off for the above filter.

Using the .PARAM statement, add these lines to the netlist

.PARAM f0 1k

.PARAM alpha 1

.PARAM C1 10n

For more information on .PARAM see page 251

E1

1

{C1}

C1

{2/(2*pi*f 0*C1*alpha)}

R1

 AC 1 0
V1

{2/(2*pi*f 0*C1*alpha)}

R2

{C1*alpha*alpha/4}
C2

VOUT
42

Chapter 3 Simulator Devices
Using the Let command, you would type:

Let f0=1k
Let alpha=1
Let C1=10n

If you then wanted to alter the damping factor to 0.8 you only need to type in its new
value:

Let alpha=0.8

then re-run the simulator.

To execute the Let commands from within a script, prefix the parameter names with
global:. E.g. “Let global:f0=1k”

In many cases the .PARAM approach is more convenient as the values can be stored
with the schematic.

Optimisation

Overview

An optimisation algorithm may be enabled for expressions used to define arbitrary
sources and any expression containing a swept parameter. This can improve
performance if a large number of such expressions are present in a design.

The optimiser dramatically improves the simulation performance of the power device
models developed by Infineon. See “Optimiser Performance” below.

Why is it Needed?

The simulator’s core algorithms use the Newton-Raphson iteration method to solve
non-linear equations. This method requires the differential of each equation to be
calculated and for arbitrary sources, this differentiation is performed symbolically. So
as well calculating the user supplied expression, the simulator must also evaluate the
expression’s differential with respect to each dependent variable. These differential
expressions nearly always have some sub-expressions in common with sub-
expressions in the main equation and other differentials. Calculation speed can be
improved by arranging to evaluate these sub-expressions only once. This is the main
task performed by the optimiser. However, it also eliminates factors found on both the
numerator and denominator of an expression as well as collecting constants together
wherever possible.

Using the Optimiser

The optimiser is automatically enabled and no action is required to make use of it. If
desired, it can be disabled using:

.OPTIONS optimise=0
43

Simulator Reference Manual
Optimiser Performance

The optimisation algorithm was added to SIMetrix primarily to improve the
performance of some publicly available power device models from Infineon. These
models make extensive use of arbitrary sources and many expressions are defined
using .FUNC.

The performance improvement gained for these model is in some cases dramatic. For
example a simple switching PSU circuit using a SGP02N60 IGBT ran around 5 times
faster with the optimiser enabled and there are other devices that show an even bigger
improvement.

Accuracy

The optimiser simply changes the efficiency of evaluation and doesn’t change the
calculation being performed in any way. However, performing a calculation in a
different order can alter the least significant digits in the final result. In some
simulations, these tiny changes can result in much larger changes in circuit solution.
So, you may find that switching the optimiser on and off may change the results
slightly.

Subcircuits

Overview

Subcircuits are a method of defining a circuit block which can be referenced any
number of times by a single netlist line or schematic device. Subcircuits are the method
used to define many device models such as op-amps.

Subcircuit Definition

Subcircuits begin with the .SUBCKT statement and end with .ENDS. A subcircuit
definition is of the form:

.SUBCKT subcircuit_name nodelist [[params:] default_parameter_list]

definition_lines

.ENDS

subcircuit_name Name of the subcircuit and is used to reference
it in the main netlist.

nodelist Any number of node names and are used for
external connections. The subcircuit call (using
an ‘X’ device) would use a matching number
of nodes in the same order.

default_parameter_list List of parameters and their default values in
the form name=value. Subcircuit parameters
are explained in “Using Expressions” on
page 31.

definition_lines List of valid device and model lines. In
44

Chapter 3 Simulator Devices
addition, .NODESET, .IC and .KEEP lines
may also be placed in a subcircuit.

Example

This is an example of an opamp subcircuit called SXOA1000. VINP, VINN VOUT
VCC and VEE are its external connections. The three .model lines define devices that
are local, that is, they are only accessible within the subcircuit definition.

.subckt SXOA1000 VINP VINN VOUT VCC VEE
I2 D2_N VEE 100u
I1 Q3_E VEE 100u
C1 VOUT R1_P 10p
D1 Q7_C D1_N D1
D2 D1_N D2_N D1
D3 VEE Q3_E D1
Q2 VEE D2_N VOUT 0 P1
Q3 Q3_C R3_P Q3_E 0 N1
Q1 VCC Q7_C VOUT 0 N1
Q6 Q3_C Q3_C VCC 0 P1
Q7 Q7_C Q5_C VCC 0 P1
R1 R1_P Q5_C 100
Q4 Q5_C R2_N Q3_E 0 N1
R2 VINP R2_N 1K
Q5 Q5_C Q3_C VCC 0 P1
R3 R3_P VINN 1K

.model N1 NPN VA=100 TF=1e-9

.model P1 PNP VA=100 TF=1e-9

.model D1 D

.ends

Where to Place Subcircuit Definition

Subcircuit definitions may be placed in a number of locations.

• Directly in the netlist. This is the best place if the subcircuit is specific to a
particular design. If you are entering the circuit using the schematic editor, see
“Adding Extra Netlist Lines” on page 13. to find out how to add additional lines
to the netlist.

• Put in a separate file and pull in to the schematic with .INC (page 222) statement
placed in the netlist.

• Put in a library file and reference in schematic with SIMetrix form of .LIB
(page 227) statement placed in the netlist. Similar to 2. but more efficient if
library has many models not used in the schematic. Only the devices required
will be read in.

• Put in a library file and install as a model library. See User's Manual for full
details.

Subcircuit Instance

Once a subcircuit has been defined, any number of instances of it may be created.
These are of the form:
45

Simulator Reference Manual
Xxxxx nodelist sub_circuitname [[params:|:] parameters]

nodelist List of nodes, each of which will connect to its corresponding
node in the subcircuit's definition. The number of nodes in the
instance must exactly match the number of nodes in the
definition.

sub_circuitname Name of the subcircuit definition.

parameters List of parameter names and their values in the form
name=value. These may be referenced in the subcircuit
definition. Subcircuit parameters are explained below.

Passing Parameters to Subcircuits

You can pass parameters to a subcircuit. Consider the filter example provided in
“Using Expressions” above. Supposing we wanted to define several filters with
different characteristics. We could use a subcircuit to define the filter but the values of
the components in the filter need to be different for each instance. This can be achieved
by passing the parameter values to each instance of the subcircuit.

So:

** Definition
.SUBCKT Filter IN OUT params: C1=1n alpha=1 f0=1k
C2 0 R1_P {C1*alpha*alpha/4}
C1 OUT R1_N {C1}
E1 OUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N IN {2/(2*pi*f0*C1*alpha)}
.ENDS

** Subcircuit instance
X1 V1_P VOUT Filter : C1=10n alpha=1 f0=10k

** AC source
V1 V1_P 0 AC 1 0

In the above example the parameters after params: in the .subckt line define default
values should any parameters be omitted from the subcircuit instance line. It is not
compulsory to define defaults but is generally recommended.

Note

In the syntax definition for both subcircuit definitions and subcircuit instances, the
params: specifier is shown as optional. If params: is included the '=' separating the
parameter names and their values becomes optional.

Nesting Subcircuits

Subcircuit definitions may contain both calls to other subcircuits and local subcircuit
definitions.

If a subcircuit definition is placed within another subcircuit definition, it becomes
local. That is, it is only available to its host subcircuit.
46

Chapter 3 Simulator Devices
Calls to subcircuits may not be recursive. A subcircuit may not directly or indirectly
call its own definition.

Global Nodes

Sometimes it is desirable to refer to a node at the circuit's top level from within a
subcircuit without having to explicitly pass it. This is sometimes useful for supply
rails.

SIMetrix provides three methods.

• '#' prefix. Any node within a subcircuit prefixed with '#' will connect to a top
level node of the same name without the '#' prefix.

• '$g_' prefix. Any node in the circuit prefixed '$g_' will be treated as global

• Using .GLOBAL see page 215

The second approach is compatible with PSpice. The third approach is compatible
with Hspice

Note the first two approaches are subtly different. In the second approach the '$g_'
prefix must be applied to all connected nodes, whereas in the first approach the '#'
prefix must be applied only to subcircuit nodes.

Subcircuit Preprocessing

SIMetrix features a netlist preprocessor that is usually used for SIMPLIS simulations
and was developed for that purpose. The preprocessor has some features that aren’t
available in the native simulator and for this reason it would be useful to be able to use
the preprocessor for SIMetrix simulations.

It is not necessary to apply the preprocessor to the entire netlist. Any subcircuit call
that defines preprocessor variables using the ‘vars:’ specifier will be passed to the
preprocessor. For example:

X$C1 R1_P 0 ELEC_CAP_L13 vars: LEVEL=3 CC=1m
+ RSH_CC=1Meg IC=0 RESR=10m LESL=100n USEIC=1

calls the ELEC_CAP_L13 subcircuit but passes it through the preprocessor first. This
model is a model for an electrolytic capacitor and uses a number of .IF statements to
select model features according to the LEVEL parameter.

The preprocessor also provides a means of generating multiple devices using .WHILE.
For information on the preprocessor, see the SIMPLIS Reference Manual.

Model Binning

Overview

Some devices can be binned. This means that a number of different model definitions
can be provided for the same device with each being valid over a limited range of some
47

Simulator Reference Manual
device parameter or parameters. The simulator will automatically select the
appropriate model according to the value given for the device parameters.

Currently only BSIM3, BSIM4 and HiSIM HV MOSFETs may be binned. The binning
is controlled by the length and width device parameters (L and W) while the LMIN,
LMAX, WMIN and WMAX model parameters specify the valid range for each model.

Important Note

The binned models should be placed directly in the netlist or called using either .INC
or the Hspice form of .LIB. They will not work correctly when installed as a model
library or accessed with the SIMetrix form of .LIB.

Defining Binned Models

Binned models are defined as a set consisting of two or more .MODEL definitions.
Each of the definitions must be named using the following format:

root_name.id

root_name Name used by the device to call the model. Must be the same for
all model definitions in a set

id Arbitrary name that must be unique for each model in a set. This
would usually be a number but this is not a requirement

Each model definition must also contain a MIN/MAX parameter pair for each bin
control parameter. For the BSIM3 MOSFET there are two bin control parameters,
namely L and W with corresponding MIN/MAX pairs LMIN/LMAX and WMIN/
WMAX. For a binned BSIM3 model, all four must be present. These parameters define
the range of L and W over which the model is valid. When a model is required, the
simulator searches all models with the same root_name for a definition whose LMIN/
LMAX and WMIN/WMAX parameters are compatible with the device's L and W.

Example

.MODEL N1.1 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=1u WMAX=4u

.MODEL N1.2 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=1u WMAX=4u

.MODEL N1.3 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=4u WMAX=10u

.MODEL N1.4 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=4u WMAX=10u

** This device will use N1.1
M1 1 2 3 4 N1 L=2u W=2u

** This device will use N1.2
M2 1 2 3 4 N1 L=6u W=2u

** This device will use N1.3
M3 1 2 3 4 L=2u W=7u
48

Chapter 3 Simulator Devices
** This device will use N1.4
M4 1 2 3 4 L=6u W=7u

Language Differences

SIMetrix is compatible with some PSpice and Hspice extensions mainly so that it
can read external model files. Some aspects of these alternative formats are
incompatible with the SIMetrix native format and in such cases it is necessary to
declare the language being used. See “Language Declaration” on page 21 for details on
how to do this.

The following sections describe the incompatibilities between the three languages.

Inline Comment

Hspice uses the dollar ('$') symbol for inline comments while SIMetrix and PSpice
use a semi-colon (';'). The language declaration described above determines what
character is used.

Unlabelled Device Parameters

The problem with unlabelled device parameters is illustrated with the following
examples.

The following lines are legal in Hspice mode but illegal in SIMetrix mode.

.PARAM area=2
Q1 C B E S N1 area

Q1 will have an area of 2. Conversely the following is legal in SIMetrix but is illegal in
Hspice:

.PARAM area=2
Q1 C B E S N1 area area

Again Q1 has an area of 2.

The problem is that SIMetrix does not require '=' to separate parameter names with
their values whereas Hspice does. area is a legal BJT parameter name so in the first
example SIMetrix can't tell whether area refers to the name of the BJT parameter or
the name of the .PARAM parameter defined in the previous line. Hspice can tell the
difference because if area meant the BJT parameter name it would be followed by an
'='.

This line is legal and will be correctly interpreted in both modes

.PARAM area=2
Q1 C B E S N1 area=area

Although Hspice always requires the '=' to separate parameter names and values, it
continues to be optional in SIMetrix even in Hspice mode. It only becomes
compulsory where an ambiguity needs to be resolved as in the second example above.
49

Simulator Reference Manual
LOG() and PWR()

The LOG() function means log to the base 10 in SIMetrix but in PSpice and Hspice
means log to the base e. PWR() in PSpice and SIMetrix means |x|y whereas in
Hspice it means “if x>=0 |x|y else -|x|y”. The language declaration only affects the
definition when used in expressions to define model and device parameters. When
used in arbitrary source expressions, the language assumed is controlled by the method
of implementing the device as follows:

SIMetrix:
B1 1 2 V=expression

PSpice
E1 1 2 VALUE = {expression }

Hspice
E1 1 2 VOL = 'expression'

Note that the function LN() always means log to base e and LOG10() always means
log to base 10. We recommend that these functions are always used in preference to
LOG to avoid confusion.

Customising Device Configuration

Overview

Models for discrete devices and for integrated circuit processes come from a variety of
sources and are often designed for particular simulators, in particular, PSpice and
Hspice. These simulators are not generally compatible with each other so it is not easy
for SIMetrix to be simultaneously compatible with both. Further, SIMetrix itself needs
to retain backward compatibility with its own earlier versions.

An example of conflict can be found with the standard diode. The SIMetrix diode with
no level parameter specified is mainly compatible with PSpice. But the standard
Hspice diode is quite different and not compatible. The SIMetrix Level=3 diode is
however compatible with Hspice both for level=1 and level=3. To use Hspice level=1
diode models the user has to edit the model so that level is changed to 3.

It is not always convenient to modify model files and for this reason SIMetrix provides
an alternative in the form of the device configuration file. This provides a means of
changing the access to particular device model including re-mapping level numbers.
The following section describes how to setup a device configuration file.

What does the Device Configuration File do?

The device configuration file (DCF) edits or adds to an internal table used to map
model names, level numbers and access letters to an actual device model. All device
models (that is the binary code that implements the device equations) have an internal
name that is used to uniquely identify it, but this name is not used externally. Instead
.MODEL statements use their own name (e.g. nmos, pnp) coupled with an optional
LEVEL parameter to define the actual device referred to. For example, the MOS level
3 device is referred internally as “MOS3” but the .MODEL statements use the names
NMOS or PMOS and set the LEVEL parameter to 3. The mapping between NMOS
50

Chapter 3 Simulator Devices
and LEVEL 3 to “MOS3” is defined in an internal table which can be modified by
specifying a device configuration file.

The DCF can add new entries to the table so providing additional methods of accessing
a device. It can also modify existing entries to point to a new device.

Creating a Device Configuration File

The device configuration file (DCF) path and name are defined by the option variable
DevConfigFile. By ‘option variable’, we mean the variables assigned using the
command line Set command not simulator options set by .OPTIONS. The default value
for the setting is %SHAREPATH%/DeviceConfig.sxdcf, %SHAREPATH% resolves to
the support directory under the SIMetrix root in windows and the share directory in
Linux.

Format

Each line in the DCF maps a single device and consists of up to 4 assigned parameters.
These are described in the following table.

To modify an existing mapping, you only need to provide the model name, device and
level. The modelname and level must point to an existing combination that is already
in use (see “List of All Simulator Devices” on page 52), e.g. ModelName=D and
Level=1, and device would then be set to the new device that this combination is to
point to, e.g. Diode3. So this is what the line would be:

ModelName=D,Level=1,Device=Diode3

The above would make level 1 diodes use the same model as level=3. Here is another
example:

ModelName=R,Level=0,Device=HspiceRes

Level=0 is the level value when the LEVEL parameter is not specified. In the case of
resistors, no .MODEL statement is required at all, so the above line will change the
default model used for all resistors to the Hspice model instead of the native SIMetrix
model.

Keyword Description

ModelName Model name used in .MODEL
statement

Device Internal device name. See table

Level Level parameter

Letter Device letter

Report Value on or off. If on a report of the
device mapping will be displayed in
the command shell when SIMetrix
starts
51

Simulator Reference Manual
It is also possible to add a new mapping in which case the level and modelname
parameters must be currently unused. Also when creating a new mapping the ‘Letter’
parameter must be specified. ‘Letter’ is the first letter of the component reference
traditionally used to identify the type of device in SPICE netlists. For example ‘Q’
refers to BJTs and ‘D’ refers to diodes.

For example, the following entries define LEVEL=55 as a valid level for accessing the
EKV model:

ModelName=NMOS,Level=55,Device=EKV,Letter=M
ModelName=PMOS,Level=55,Device=EKV,Letter=M

Note that two entries are required in order to support both n-channel and p-channel
devices. The above doesn’t change the existing level (44) it adds an additional level.
Both 44 and 55 will be accepted and be equivalent.

When defining a new mapping the letter must be specified and usually this should be
the letter conventionally used for the class of device. If defining a new mapping for a
MOSFET, the letter ‘M’ should be used, for a diode the letter ‘D’ should be used and
so on. However, the letters, ‘N’, ‘P’, ‘W’, ‘U’ and ‘Y’ maybe used as well for any type
of device.

List of All Simulator Devices

A list of all internal devices may be obtained using the show_devices script. This will
copy to the system clipboard a tab delimited table listing all internal devices. This is
guaranteed to be accurate as it is generated directly by SIMetrix. To obtain this table
proceed as follows:

1. Type this at the command line. (The edit box below the menu bar in the
command shell. This is not available in the free SIMetrix Intro)

show_devices

2. You should see a message “Device information has been copied to the system
clipboard” appear

3. Using a spreadsheet program, execute the Paste function. You should see the
table appear.

The table has seven columns:
Column 1: Internal name. This is the device name
Column 2: Model name as used in the .MODEL statement
Column 3: Level.
Column 4: Minimum number of terminals that this device must have
Column 5: Maximum number of terminals that this device may have
Column 6: Device letter
Column 7: Model Version

Some internal devices have a model name beginning with ‘$$’. These device do not
use a .MODEL statement and have no model parameters. The name is used internally
only.

Devices with a minimum number of terminals of -1 do not have a minimum number.
Similarly devices with zero maximum number of terminals do not have a maximum.
52

Chapter 4 Analog Device Reference
Chapter 4 Analog Device Reference

Overview

This chapter provides the full details of every option and parameter available with
every primitive analog device that the simulator supports.

For documentation on digital and mixed signal devices supplied with SIMetrix, please
see “Digital/Mixed Signal Device Reference” on page 145.

Further Documentation

Some devices are fully documented by their developers and we have not repeated that
documentation here. In all cases the documents may be found on the installation
CDROM. We no longer ship a physical CDROM but its contents may be browsed and
an image downloaded from our web site. Visit

http://www.simetrix.co.uk/app/product-installation.htm

then click on Download links. You will need a user name and password to access this
page. An automated system is available to obtain this and you will find details at the
above link.

AC Table Lookup (including S-Parameters)

Netlist Entry

Uxxx node_pairs modelname

Where

node_pairs Pairs of nodes for each port. So for example, a two port device
has four nodes.

modelname Model name

Model Format

.MODEL modelname actable LOAD=filename [
NUMPORTS=number_of_ports] [DCMETHOD=extrapolate|extend] [
DCPARAMS=[dcgainvalues]]

Where:

filename Name of file containing frequency table. File uses Touchstone
format and may contain s-parameters or y-parameters. Other
parameter types are not currently supported.

number_of_ports Number of ports. Default value is 2. If y-parameters are
supplied, any number of ports may be specified. If s-parameters
are specified, the number of ports must be 1 or 2.
53

http://www.simetrix.co.uk/app/product-installation.htm
http://www.simetrix.co.uk/app/product-installation.htm
http://www.simetrix.co.uk/app/product-installation.htm

Simulator Reference Manual
DCMETHOD Has values of ‘extrapolate’ or ‘extend’. This determines how the
DC gains are calculated if they are not explicitly defined using
the DCPARAMS parameter or with an explicit F=0 term in the
definition file. With ‘extrapolate’, the dc values are calculated
by extrapolating back to zero; with ‘extend’, the DC gain is the
same as the lowest frequency gain.

dcgainvalues Vector providing the DC gain values for the network. This is
expected to be an n x n matrix where n is the number of ports.

AC Table Notes

The AC Table device implements a circuit device that is defined by a frequency lookup
table. This device operates only in the small signal analysis modes, AC, Noise and TF.
In transient and DC analyses it behaves like a simple linear DC gain block with no
frequency dependence.

The lookup table for this device must be defined by a file and uses the industry
standard ‘Touchstone’ format. The full details of this format are supplied as a separate
document and maybe found on the SIMetrix install CDROM and at our web site.
Please visit “Further Documentation” on page 53 for details.The document is freely
distributable under the terms described therein and may also be found at various
Internet sites.

The SIMetrix implementation of the touchstone format includes the following:
1. Y-parameters to any number of ports

2. 1 and 2 port s-parameters

Z, H and G parameters are not supported. Also, noise parameters are not supported.

Touchstone files traditionally use the extension snp where n indicates the number of
ports. Be aware that SIMetrix uses the NUMPORTS parameter in the .model statement
to determine the number of ports and will ignore the value of n in the filename
extension.

Arbitrary Source

Netlist Entry

Voltage source:
Bxxxx n+ n- [MIN=min_value] [MAX=max_value] V=expression

Current source:
Bxxxx n+ n- [MIN=min_value] [MAX=max_value] [M=multiplier]
I=expression

Charge source:
Bxxxx n+ n- [M=multiplier] Q=expression

Flux source:
54

Chapter 4 Analog Device Reference
Bxxxx n+ n- FLUX=expression

An arbitrary source is a voltage or current source whose output can be expressed as an
arbitrary relationship to other circuit voltages or currents.

expression Algebraic expression describing voltage or current output in
terms of circuit nodes or sources. See “Expression Syntax” on
page 32 for full details.

min_value Minimum value of source

max_value Maximum value of source

multiplier Scale factor. Source will behave as if there multiplier devices in
parallel

Bxxxx Component reference

n+ Positive output node.

n- Negative output node.

The small-signal AC behaviour of the non-linear source is a linear dependent source
with a proportionality constant equal to the derivative (or derivatives) of the source at
the DC operating point.

Note that if MIN and/or MAX parameters are specified, they must precede the defining
expression.

Charge and flux sources implement capacitors and inductors respectively. See “Charge
and Flux Devices” below for details.

If the source is a current, the direction of flow is into the positive node (n+).

Notes on Arbitrary Expression

It is essential that the expression used for an arbitrary source is well conditioned. This
means that it must be valid for all values (i.e. from - to +) of its input variables (i.e.
circuit voltages and currents) and that it is continuous. It is also desirable - although
not always absolutely necessary - for the function to be continuous in its first
derivative; i.e. it does not have any abrupt changes in slope.

A badly designed expression will lead to poor convergence, non-convergence or slow
run times. This is especially the case if the source is used in a feedback loop. If the
arbitrary source is used open loop then the above conditions can sometimes be relaxed
especially if the input signal is well defined e.g. derived directly from a signal source.

Some functions are not continuous in nature. E.g. the STP() and SGN() functions are
not. These may nevertheless be used in an expression as long as the end result is
continuous.

Similarly, the IF() function (or ternary conditional using ‘?’ and ‘:’) should be used
with care. The following IF() function is continuous:

IF(v1>v2, 0, (v1-v2)*2)
55

Simulator Reference Manual
When v1=v2 both true and false values equate to zero so the function has no abrupt
change. The function still has a discontinuous first derivative with respect to both v1
and v2 which is still undesirable but will work satisfactorily in most situations.

The following example is not continuous:

IF(v1>v2, 0, 5)

The result of this will switch abruptly from 0 to 5 when v1=v2. This is not something
that the simulator can be guaranteed to handle and cannot be implemented in real life.

A better, albeit less intuitive method, of achieving the intent of the above is:

(TANH((v2-v1)*factor)+1)*2.5+2.5

where factor is some number that determines the abruptness of the switching action.
For a value of 147, 95% of the full output will be achieved with just 10mV overdrive.

Charge and Flux Devices

It is possible to define capacitors and inductors directly using the arbitrary source.
Capacitors must be defined in terms of their charge and inductors by their flux. These
are defined in the same as voltage and current arbitrary sources but using ‘q’ or ‘flux’
instead of ‘v’ or ‘i’. E.g. the following defines a simple linear capacitor:

B1 n1 n2 Q = C*V(n1,n2)

Similarly a linear inductor is:

B1 n1 n2 flux = L * i(B1)

The main benefit of this feature is that it makes it possible to define non-linear
capacitors and inductors directly. It is also possible to use the ddt() and sdt() functions
to create capacitors and inductors using regular current and voltage sources. However,
the above method is more efficient.

As with voltage and current arbitrary sources, it is possible to use any combination of
voltages and currents in the expression. So, for example, the following defines a
transformer:

Bprimary p1 p2 flux = Lp*i(Bprimary) + M*i(Bsecondary)
Bsecondary s1 s2 flux = Ls*i(Bsecondary) + M*i(Bprimary)

Arbitrary Source Examples

Example 1 - Ideal Power Converter

This examples also demonstrates the use of expressions within subcircuits. (See
“Using Expressions” on page 31)

The following subcircuit implements an idealised power converter with an efficiency
of eff and whose output voltage is proportional to the input voltage (vinn,vinp)
56

Chapter 4 Analog Device Reference
multiplied by the control voltage (vcp,vcn). It is intended to simulate the voltage/
current characteristics of a switching power converter.

.subckt powerconv voutp voutn vinp vinn vcp vcn
biin1 vinp vinn i=-v(voutp,voutn)/v(vinp,vinn)*i(vout1)/{eff}
vout1 bmult1_n voutn 0
bmult1 voutp bmult1_n v=v(vinp,vinn)*v(vcp,vcn)
r1 vcp vcn 1meg
.ends

Once again, with an appropriate schematic symbol, the device can be placed on the
schematic as a block as shown below:

Example 2 - Voltage Multiplier

The expression for an arbitrary source must refer to other voltages and/or currents on
the schematic. Currents are referenced as voltage sources and voltages as netnames.
Netnames are usually allocated by the netlister. For information on how to display and
edit the schematic's netnames, refer to “Displaying Net and Pin Names” on page 13.

In the above circuit the voltage across B1 will be equal to the product of the voltages at
nodes n1 and n2.

An alternative approach is to define the arbitrary source within a subcircuit. E.g.

.subckt MULT out in1 in2

R1
1K

powerconv : ef f =0.7

U1

v 1
pulse (100 0 0 1m)

D2

ideal

C1
270u

R5
1meg

E1

1000

V2
12

n2

10k

R4

1K
R2

1K
R1

1K
R3

n1

B1
V=V(n2)*V(n1)
57

Simulator Reference Manual
B1 out 0 V=V(in1)*V(in2)
.ends

which can be added to the netlist manually. (To find out how to add additional lines to
the netlist when using the schematic editor, refer to “Adding Extra Netlist Lines” on
page 13). A symbol could be defined for it and then placed on the schematic as a block
as shown below:

Example 3 - Voltage comparator

B3 q3_b 0 V=atan(V(n1,n2)*1000)

This can also be added to the schematic in the same way as for the multiplier described
above.

PSpice and Hspice syntax

SIMetrix supports the PSpice and Hspice syntax for arbitrary sources. This is for
compatibility with some manufacturers device models. For PSpice the VALUE = and
TABLE = devices are supported and for Hspice VOL= and CUR= are supported.

Bipolar Junction Transistor (SPICE Gummel Poon)

Netlist Entry

Qxxxx collector base emitter [substrate] modelname [area] [OFF]
[IC=vbe,vce] [TEMP=local_temp] [M=mult] [DTEMP=dtemp]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and ' . ' .

R3
1K

R1
1K

X1

MULT

R2
1K

R4
1K
58

Chapter 4 Analog Device Reference
area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 236 for more details.

vbe,vce Initial conditions for base-emitter and collector-emitter
junctions respectively. These only have an effect if the UIC
parameter is specified on the .TRAN statement (see “.TRAN”
on page 265).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 237) or .TEMP (page 262) statements.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence.

NPN BJT Model Syntax

.model modelname NPN (parameters)

PNP BJT Model Syntax

.model modelname PNP (parameters)

Lateral PNP BJT Model Syntax

.model modelname LPNP (parameters)

BJT Model Parameters

The symbols '  ' and '  ' in the Area column means that the specified parameter
should be multiplied or divided by the area factor respectively.

Name Description Units Default Area

IS Transport saturation current A 1e-16 ×

BF Ideal maximum forward beta 100

NF Forward current emission
coefficient

1.0

VAF, VA Forward Early voltage V 

IKF, IK Corner for forward beta high
current roll-off

A  ×

ISE B-E leakage saturation current A 0 ×
59

Simulator Reference Manual
NE B-E leakage emission coefficient 1.5

BR Ideal maximum reverse beta 1

NR Reverse current emission
coefficient

1

VAR Reverse Early voltage V 

IKR Corner for reverse beta high
current roll-off

A  ×

ISC B-C leakage saturation current A 0 ×

NC B-C leakage emission coefficient 2

NK, NKF 0.5

RB Zero bias base resistance  0 ÷

IRB Current at which base resistance
falls halfway to its minimum value

A  ×

RBM Minimum base resistance at high
currents

 RB ÷

RE Emitter resistance  0 ÷

RC Collector resistance  0 ÷

CJE B-E zero-bias depletion
capacitance

F 0 ×

VJE, PE B-E built in potential V 0.75

MJE, ME B-E junction exponential factor 0.33

TF Ideal forward transit time Sec. 0

XTF Coefficient for bias dependence of
TF

0

VTF Voltage describing VBC
dependence of TF

V 

ITF High-current parameter for effect
on TF

A 0 ×

PTF Excess phase at freq=1.0/(TF2
Hz

degree 0

CJC B-C zero-bias depletion
capacitance

F 0 ×

VJC, PC B-C built-in potential V 0.75

MJC, MC B-C junction exponential factor 0.33

XCJC Fraction of B-C depletion
capacitance connected to internal
base node

1

Name Description Units Default Area
60

Chapter 4 Analog Device Reference
TR Ideal reverse transit time Sec. 0

ISS Substrate diode saturation current A 0 ×

NS Substrate diode emission
coefficient

1

CJS, CCS Zero-bias collector substrate
capacitance

F 0 ×

VJS, PS Substrate junction built-in potential V 0.75

MJS, MS Substrate junction exponential
factor

0

XTB Forward and reverse beta
temperature exponent

0

EG Energy gap eV 1.11

XTI Temperature exponent for effect on
IS

3

FC Coefficient for forward-bias
depletion capacitance formula

0.5

TNOM,
TREF,
t_measured

Reference temperature; the
temperature at which the model
parameters were measured

C 27

T_ABS If specified, defines the absolute
model temperature overriding the
global temperature defined using
.TEMP

C -

T_REL_
GLOBAL

Offsets global temperature defined
using .TEMP. Overridden by
T_ABS

C 0

KF Flicker noise coefficient 0

AF Flicker noise exponent 1.0

EF Flicker noise exponent 1.0

KFR Reverse flicker noise coefficient KF

AFR Reverse flicker noise exponent AF

EFR Reverse flicker noise exponent EF

NOISMOD Model selector. 1 (default) selects a
corrected model for base shot and
flicker noise. See to 0 for
compatibility with earlier versions
and other simulators

1

VO V 10.0

QCO Epitaxial region charge factor coulomb 0.0 ×

Name Description Units Default Area
61

Simulator Reference Manual
QUASIMOD Quasi saturation temperature flag:
QUASIMOD=0: no temperature
dependence
QUASIMOD=1: temperature
dependence enabled

0

RCO Epitaxial region resistance. Set to
non-zero to enable quasi saturation
model

0.0 ÷

GAMMA Epitaxial region doping factor 1e-11

VG Quasi saturation extrapolated
bandgap voltage at 0K

V 1.206

D Quasi saturation temp coeff for
scattering limited hole carrier
velocity

NPN:
0.87
PNP
:0.52

CN Quasi saturation temp coeff for hole
mobility

NPN:
2.42
PNP:
2.20

NEPI 1.0

SUBS If set to -1, device is lateral 1.0

TRE1 First order temperature coefficient,
RE

0.0

TRE2 Second order temperature
coefficient, RE

0.0

TRB1, TRB First order temperature coefficient,
RB

0.0

TRB2 Second order temperature
coefficient, RB

0.0

TRM1 First order temperature coefficient,
RBM

0.0

TRM2 Second order temperature
coefficient, RBM

0.0

TRC1, TRC First order temperature coefficient,
RC

0.0

TRC2 Second order temperature
coefficient

0.0

Name Description Units Default Area
62

Chapter 4 Analog Device Reference
Hspice Temperature Parameters

The parameters defined in the following table are temperature coefficients and apply if
the Hspice temperature model is enabled. This is the case if one or more of the
following parameters are defined in the .MODEL statement:

TLEV, TLEVC, TIKF1, TIKF2, TIKR1, TIKR2, TIRB1, TIRB2.

If none of these parameters are specified, the standard (SPICE) temperature model is
enabled and the following parameters have no effect.
63

Simulator Reference Manual
Name Description Units Default

TLEV Temperature selector. Valid values are 0,
1, 2 or 3.

TLEVC Capacitance temperature selector. Valid
values are 0, 1, 2 and 3

TIKF1 First order temperature coefficient, IKF

TIKF2 Second order temperature coefficient,
IKF

TIKR1 First order temperature coefficient, IKR

TIKR2 Second order temperature coefficient,
IKR

TIRB1 First order temperature coefficient, IRB

TIRB2 Second order temperature coefficient,
IRB

TIS1 First order temperature coefficient, IS.
(TLEV=3)

TIS2 Second order temperature coefficient, IS.
(TLEV=3)

TBF1 First order temperature coefficient, BF

TBF2 Second order temperature coefficient, BF

TBR1 First order temperature coefficient, BR

TBR2 Second order temperature coefficient, BR

TISE1 First order temperature coefficient, ISE.
(TLEV=3)

TISE2 Second order temperature coefficient,
ISE. (TLEV=3)

TISC1 First order temperature coefficient, ISC.
(TLEV=3)

TISC2 Second order temperature coefficient,
ISC. (TLEV=3)

TISS1 First order temperature coefficient, ISS.
(TLEV=3)

TISS2 Second order temperature coefficient,
ISS. (TLEV=3)

TVAF1 First order temperature coefficient, VAF

TVAF2 Second order temperature coefficient,
VAF

TVAR1 First order temperature coefficient, VAR
64

Chapter 4 Analog Device Reference
TVAR2 Second order temperature coefficient,
VAR

TITF1 First order temperature coefficient, ITF

TITF2 Second order temperature coefficient, ITF

TTF1 First order temperature coefficient, TF

TTF2 Second order temperature coefficient, TF

TTR1 First order temperature coefficient, TR

TTR2 Second order temperature coefficient, TR

TNF1 First order temperature coefficient, NF

TNF2 Second order temperature coefficient, NF

TNR1 First order temperature coefficient, NR

TNR2 Second order temperature coefficient, NR

TNE1 First order temperature coefficient, NE

TNE2 Second order temperature coefficient, NE

TNC1 First order temperature coefficient, NC

TNC2 Second order temperature coefficient, NC

TNS1 First order temperature coefficient, NS

TNS2 Second order temperature coefficient, NS

TMJE1 First order temperature coefficient, MJE

TMJE2 Second order temperature coefficient,
MJE

TMJC1 First order temperature coefficient, MJC

TMJC2 Second order temperature coefficient,
MJC

TMJS1 First order temperature coefficient, MJS

TMJS2 Second order temperature coefficient,
MJS

TVJE VJE temperature coefficient. (TLEVC0)

TVJC VJC temperature coefficient. (TLEVC0)

TVJS VJS temperature coefficient. (TLEVC0)

CTE CJE temperature coefficient. (TLEVC0)

CTC CJC temperature coefficient. (TLEVC0)

CTS CJS temperature coefficient. (TLEVC0)

Name Description Units Default
65

Simulator Reference Manual
Notes

The bipolar junction transistor model in SPICE is an adaptation of the integral charge
control model of Gummel and Poon.

This modified Gummel-Poon model extends the original model to include several
effects at high bias levels. The model will automatically simplify to the simpler Ebers-
Moll model when certain parameters are not specified.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE which
determine the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC
which determine the reverse current gain characteristics, and VAF and VAR which
determine the output conductance for forward and reverse regions. Three ohmic
resistances RB, RC, and RE are included, where RB can be high current dependent.
Base charge storage is modelled by forward and reverse transit times, TF and TR, the
forward transit time TF being bias dependent if desired, and non-linear depletion layer
capacitances which are determined by CJE, VJE, and MJE for the B-E junction, CJC,
VJC, and MJC for the B-C junction and CJS, VJS, and MJS for the C-S (Collector-
Substrate) junction. The temperature dependence of the saturation current, IS, is
determined by the energy-gap, EG, and the saturation current temperature exponent,
XTI. Additionally base current temperature dependence is modelled by the beta
temperature exponent XTB in the new model.

This implementation includes further enhancements to model quasi-saturation effects.
This is governed by the model parameters RCO, QCO, GAMMA and for temperature
dependence, QUASIMOD, VG, D and CN. The quasi-saturation model is compatible
with PSpice. Hspice models may be accommodated by setting RC to zero and RCO to
the value of RC in the Hspice model.

References

The Quasi-saturation model was developed from the following paper:

George M. Kull, Laurence W. Nagel, Shiuh-Wuu Lee, Peter Lloyd, E. James
Prendergast and Heinz Dirks, “A Unified Circuit Model for Bipolar Transistors
Including Quasi-Saturation Effects”, . IEEE Transactions on Electron Devices, Vol.
ED-32, No 6 June 1985, pages 1103-1113

Bipolar Junction Transistor (VBIC without self heating)

Netlist Entry

Qxxxx collector base emitter [substrate] modelname [M=multiplier]
[AREA|SCALE=area]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any
66

Chapter 4 Analog Device Reference
character except whitespace and ' . ' .

multiplier Device scale. Has an identical effect as putting multiplier
devices in parallel.

area Scales certain model parameters as described in the parameter
table under Area column. A × entry means the parameter is
multiplied by the area while a ÷ means the parameter is divided
by the area.

Model Syntax

.MODEL modelname NPN|PNP LEVEL=4 parameters

Model Parameters

Name Description Units Default Area

TNOM/
TREF

Nominal ambient temperature Celsius 27

RCX Extrinsic collector resistance Ohms 0.0 ÷

RCI Intrinsic collector resistance Ohms 0.0 ÷

VO Epi drift saturation voltage 0.0

GAMM Epi doping parameter 0.0

HRCF High-current RC factor 1.0

RBX Extrinsic base resistance 0.0 ÷

RBI Intrinsic base resistance 0.0 ÷

RE Emitter resistance 0.0 ÷

RS Substrate resistance 0.0 ÷

RBP Parasitic base resistance 0.0 ÷

IS Transport saturation current 1.0E-16 ×

NF Forward emission coefficient 1.0

NR Reverse emission coefficient 1.0

FC Forward bias junction capacitance
threshold

0.9

CBEO/
CBE0

Base-emitter small signal capacitance 0.0 ×

CJE Base-emitter zero-bias junction
capacitance

0.0 ×

PE Base-emitter grading coefficient 0.75

ME Base-emitter junction exponent 0.33
67

Simulator Reference Manual
AJE Base-emitter capacitance smoothing
factor

-0.5

CBCO/
CBC0

Extrinsic base-collector overlap
capacitance

0.0 ×

CJC Base-collector zero-bias capacitance 0.0 ×

QCO/
QC0

Collector charge at zero bias 0.0 ×

CJEP Base-emitter extrinsic zero-bias
capacitance

0.0 ×

PC Base-collector grading coefficient 0.75

MC Base-collector junction exponent 0.33

AJC Base-collector capacitance smoothing
factor

-0.5

CJCP Base-collector zero-bias extrinsic
capacitance

0.0 ×

PS Collector-substrate grading coefficient 0.75

MS Collector-substrate junction exponent 0.33

AJS Collector-substrate capacitance
smoothing factor

-0.5

IBEI Ideal base-emitter saturation current 1E-18 ×

WBE Portion of IBEI from Vbei, (1-WBE) from
Vbex

1.0

NEI Ideal base-emitter emission coefficient 1.0

IBEN Non-ideal base-emitter saturation
current

0.0 ×

NEN Non-ideal base-emitter emission
coefficient

2.0

IBCI Ideal base-collector saturation current 1.0E-16 ×

NCI Ideal base-collector emission
coefficient

1.0

IBCN Non-ideal base-collector saturation
current

0.0 ×

NCN Non-ideal base- collector emission
coefficient

2.0

AVC1 Base-collector weak avalanche
parameter 1

0.0

AVC2 Base-collector weak avalanche
parameter 2

0.0

Name Description Units Default Area
68

Chapter 4 Analog Device Reference
ISP Parasitic transport saturation current 0.0 ×

WSP Portion of Iccp from Vbep, (1-WSP)
from Vbci

1.0

NFP Parasitic forward emission coefficient 1.0

IBEIP Ideal parasitic base-emitter saturation
current

0.0 ×

IBENP Non-ideal parasitic base-emitter
saturation current

0.0 ×

IBCIP Ideal parasitic base-collector saturation
current

0.0 ×

NCIP Ideal parasitic base-collector emission
coefficient

1.0

IBCNP Non-ideal parasitic base-collector
saturation current

0.0 ×

NCNP Non-ideal parasitic base-collector
emission coefficient

2.0

VEF Forward Early voltage (0=infinity) 0.0

VER Reverse Early voltage (0=infinity) 0.0

IKF Forward knee current, (0=inifinity) 0.0 ×

IKR Reverse knee current, (0=infinity) 0.0 ×

IKP Parasitic knee current (0=infinity) 0.0 ×

TF Forward transit time 0.0

QTF Variation of TF with base width
modulation

0.0

XTF Coefficient of TF bias dependence 0.0

VTF Coefficient of TF dependence on Vbc 0.0

ITF Coefficient of TF dependence of Icc 0.0

TR Ideal reverse transit time 0.0

TD Forward excess phase delay time 0.0

KFN Flicker noise coefficient 0.0

AFN Flicker noise exponent 1.0

BFN Flicker noise frequency exponent 1.0

XRE Temperature exponent of emitter
resistance

0.0

XRB Temperature exponent of base
resistance

0.0

Name Description Units Default Area
69

Simulator Reference Manual
Notes

The VBIC model is only available with Micron versions.

The Vertical Bipolar Inter-Company (VBIC) model is an advanced bipolar junction
transistor model. This is the 4-terminal non-thermal version. There is also a version
that supports self-heating effects and has 5 terminals, see “Bipolar Junction Transistor
(VBIC with self heating)” below.

For more information about VBIC, please refer to this link:

http://www.designers-guide.com/VBIC/references.html

Bipolar Junction Transistor (VBIC with self heating)

Netlist Entry

Qxxxx collector base emitter substrate thermal_node modelname
[M=multiplier] [AREA|SCALE=area]

XRC Temperature exponent of collector
resistance

0.0

XRS Temperature exponent of substrate
resistance

0.0

XV0/
XV0

Temperature exponent of Vo 0.0

EA Activation energy for IS 1.12

EAIE Activation energy for IBEI 1.12

EAIC Activation energy for IBCI/IBEIP 1.12

EAIS Activation energy for IBCIP 1.12

EANE Activation energy for IBEN 1.12

EANC Activation energy for IBCN/IBENP 1.12

EANS Activation energy for IBCNP 1.12

XIS Temperature exponent of Is 3.0

XII Temperature exponent of IBEI/IBCI/
IBEIP/IBCIP

3.0

XIN Temperature exponent of IBEN/IBCN/
IBENP/IBCNP

3.0

TNF Temperature coefficient of NF 0.0

TAVC Temperature coefficient of AVC 0.0

Name Description Units Default Area
70

Chapter 4 Analog Device Reference
collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

thermal_node See notes

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and ' . ' .

multiplier Device scale. Has an identical effect as putting multiplier
devices in parallel.

area Scales certain model parameters as described in the parameter
table under Area column. A × entry means the parameter is
multiplied by the area while a ÷ means the parameter is divided
by the area.

Model Syntax

.MODEL modelname NPN|PNP LEVEL=1004 parameters

Model Parameters

Model parameters are identical to the non-thermal version except for the addition of
the following:

Notes

The VBIC model is only available with Micron versions.

This model is the same as the VBIC non-thermal model except for the addition of self-
heating effects. Use the non-thermal version if you do not need self-heating as its
implementation is simpler and will run faster.

The thermal_node may be used to connect external thermal networks to model thermal
flow. Power in watts is represented by current and temperature rise in Kelvin is
represented by the voltage. Note that the voltage is temperature rise above the
simulation temperature, not an absolute value.

Bipolar Junction Transistor (MEXTRAM)

See “NXP Compact Models” on page 138

Name Description Units Default Area

RTH Thermal resistance 0.0 ÷

CTH Thermal capacitance 0.0 ×
71

Simulator Reference Manual
Bipolar Junction Transistor (HICUM)

Netlist Entry

Qxxxx collector base emitter [substrate] modelname

Where:
collector Collector node

base Base node

emitter Emitter node

substrate Substrate node

modelname Model name as used with .MODEL statement

NPN Model Syntax

.MODEL modelname NPN LEVEL=8 parameters

OR

.MODEL modelname HICUM_211 PNP=0 parameters

PNP Model Syntax

.MODEL modelname PNP LEVEL=8 parameters

OR

.MODEL modelname HICUM_211 PNP=1 parameters

Notes

The model provided is “Level 2 version 2.11”.

The model was implemented from Verilog-A code. It has received only minor changes
from the original supplied by the developers. These changes are to implement PNP
devices and to overcome a problem in the original model whereby it is possible for it to
converge to an erroneous state.

The SIMetrix implementation of this model has been tested using the benchmark
results provided by the developers. The majority of the tests showed a match of better
than 0.1%. A few were over 1% with one deviating by 7%. These were investigated
and it was found that the reference data was in error probably because of insufficient
convergence tolerance.

Capacitor

Netlist Entry

Cxxxx n1 n2 [model_name] value [IC=initial_condition]
[TEMP=local_temp] [TC1=tc1] [TC2=tc2] [VC1=vc1] [VC2=vc2]
72

Chapter 4 Analog Device Reference
[BRANCH=0|1] [M=mult] [DTEMP=dtemp] [ESR=esr]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model . Must begin with a letter but can
contain any character except whitespace and period '.'

value Capacitance (Farads)

initial_condition Initial voltage if UIC specified on .TRAN statement (page 265).

local_temp Capacitor temperature (°C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

vc1 First order voltage coefficient

vc2 Second order voltage coefficient

BRANCH May be 0 or 1. 0 is the default. This parameter determines the
internal formulation of the capacitor and affects how the IC
parameter is implemented. When BRANCH=0, the capacitor
looks like an open circuit during the DC operating point and the
IC parameter has no effect unless UIC is specified for a transient
analysis. If BRANCH=1, the capacitor looks like a voltage
source during dc operating point with a magnitude equal to the
value of the IC parameter. BRANCH=1 makes it possible to
specify circuit startup conditions. See “Alternative Initial
Condition Implementations” on page 222 for an example.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence.

esr Effective series resistance. If non-zero (the default value), a
resistor of value esr will be connected in series with the
capacitor. The resulting implementation of a series RC network
is more efficient and offers better convergence than using a
separate R and C. This is especially the case if the capacitor has
a high value and is non-grounded.

Important this resistor is noiseless; if the noise in the ESR is
important in your design, you should use a separate resistor and
omit this parameter in the capacitor.

Capacitor Model Syntax

.model modelname CAP (parameters)
73

Simulator Reference Manual
Capacitor Model Parameters

Current Controlled Current Source

Netlist Entry: Linear Source

Fxxxx nout+ nout- vc current_gain

nout+ Positive output node

nout- Negative output node

vc Controlling voltage source

current_gain Output current/Input current

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most operational amplifier models for
example use several polynomial sources). In general, however the arbitrary source
(page 54) is more flexible and easier to use.

Netlist Entry: Polynomial Source

Fxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See “Polynomial Specification” on page 75

Name Description Units Default

C Capacitor multiplier 1

TC1 First order temperature coefficient 1/C 0

TC2 Second order temperature coefficient 1/C2 0

VC1 First order voltage coefficient Volt-1 0

VC2 Second order voltage coefficient Volt-2 0

TNOM,
T_MEASURED

Reference temperature; the
temperature at which the model
parameters were measured

C 27

T_ABS If specified, defines the absolute
model temperature overriding the
global temperature defined using
.TEMP

C -

T_REL_GLOBAL Offsets global temperature defined
using .TEMP. Overridden by T_ABS

C 0.0
74

Chapter 4 Analog Device Reference
The specification of the controlling voltage source or source requires additional netlist
lines. The schematic netlister automatically generates these for the four terminal device
supplied in the symbol library.

Example

In the above circuit, the current in the output of F1 (flowing from top to bottom) will
be 0.1 times the current in R2.

Polynomial Specification

The following is an extract from the SPICE2G.6 user manual explaining polynomial
sources.

SPICE allows circuits to contain dependent sources characterised by any of the four
equations

i=f(v)
v=f(v)
i=f(i)
v=f(i)

where the functions must be polynomials, and the arguments may be
multidimensional. The polynomial functions are specified by a set of coefficients p0,
p1, ..., pn. Both the number of dimensions and the number of coefficients are arbitrary.
The meaning of the coefficients depends upon the dimension of the polynomial, as
shown in the following examples:

Suppose that the function is one-dimensional (that is, a function of one argument).
Then the function value fv is determined by the following expression in fa (the function
argument):

fv = p0 + (p1.fa) + (p2.fa2) + (p3.fa3) + (p4.fa4) + (p5.fa5) + ...

Suppose now that the function is two-dimensional, with arguments fa and fb. Then the
function value fv is determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fa2) + (p4.fa.fb) + (p5.fb2) + (p6.fa3) + (p7.fa2.fb) +

(p8.fa.fb2) + (p9.fb3) + ...

R2
1K

F1

0.1

R1
1K
75

Simulator Reference Manual
Consider now the case of a three-dimensional polynomial function with arguments fa,
fb, and fc. Then the function value fv is determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fc) + (p4.fa2) + (p5.fa.fb) + (p6.fa.fc) + (p7.fb2) +

(p8.fb.fc) + (p9.fc2) + (p10.fa3) + (p11.fa2.fb) + (p12.fa2.fc) + (p13.fa.fb2) +

(p14.fa.fb.fc) + (p15.fa.fc2) + (p16.fb3) + (p17.fb2.fc) + (p18.fb.fc2) + (p19.fc3) +

(p20.fa4) + ...

Note If the polynomial is one-dimensional and exactly one coefficient is
specified, then SPICE assumes it to be p1 (and p0 = 0.0), in order to
facilitate the input of linear controlled sources.

Current Controlled Voltage Source

Netlist Entry: Linear Source

Hxxxx nout+ nout- vc transresistance

nout+ Positive output node

nout- Negative output node

vc Controlling voltage source

transresistance Output current/Input current ()

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most Op-amp models use several
polynomial sources). In general, however the arbitrary source is more flexible and
easier to use.

Netlist Entry: Polynomial Source

Hxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See “Polynomial Specification” on page 75.

The specification of the controlling voltage source or source requires additional netlist
lines. The schematic netlister automatically generates these for the four terminal device
supplied in the symbol library.

Current Source

Netlist Entry

Ixxxx n+ n- [DC dcvalue] [AC magnitude [phase]] [transient_spec]
76

Chapter 4 Analog Device Reference
n+ Positive node

n- Negative node

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

transient_spec Specification for time varying source. Can be one of following:

Pulse - see page 124
Piece wise linear - see page 126
Sine - see page 127
Exponential - see page 128
Single frequency FM - see page 129
Extended PWL Source - see page 129

Diode - Level 1 and Level 3

Netlist Entry

Dxxxx n+ n- model_name [area] [OFF] [IC=vd] [TEMP=local_temp]
+ [PJ=periphery] [L=length] [W=width] [M=mult] [DTEMP=dtemp]

n+ Anode

n- Cathode

model_name Name of model defined in a .MODEL statement (page 228).
Must begin with a letter but can contain any character except
whitespace and ' . ' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 diodes in parallel.
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 236 for more details.

vd Initial condition for diode voltage. This only has an effect if the
UIC parameter is specified on the .TRAN statement (page 265).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 237) or .TEMP (page 262) statements.

periphery Level 3 only. Junction periphery used for calculating sidewall
effects.

length Level 3 only. Used to calculate area. See below.

width Level 3 only. Used to calculate area. See below.

mult Device multiplier. Equivalent to putting mult devices in parallel.
77

Simulator Reference Manual
dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence.

Examples

Diode Model Syntax

.model modelname D (LEVEL=[1|3] parameters)

Diode Model Parameters - Level = 1

The symbols '  ' and '  ' in the Area column means that the specified parameter
should be multiplied or divided by the area factor respectively.

Name Description Units Default Area

IS Transport saturation current A 1e-14 ×

ISR Recombination current
parameter

A 0 ×

N Emission coefficient 1

NR Emission Coefficient for ISR 2

IKF High injection knee current A  ×

RS Series resistance  0 ÷

TT Transit time sec 0

CJO or CJ0 Zero bias junction capacitance F 0 ×

VJ Junction potential V 1

M Grading coefficient 0.5

EG Energy gap eV 1.11

XTI Saturation current temperature
exponent

3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Forward bias depletion
capacitance coefficient

0.5

BV Reverse breakdown voltage V 

D3
D1N914 TEMP=100

D2
5 BYT12

D1
D1N4148
78

Chapter 4 Analog Device Reference
Notes The dc characteristics of the diode are determined by the parameters IS, N,
ISR, NR and IKF. An ohmic resistance, RS, is included. Charge storage
effects are modelled by a transit time, TT, and a non-linear depletion layer
capacitance which is determined by the parameters CJO, VJ, and M. The
temperature dependence of the saturation current is defined by the
parameters EG, the energy and XTI, the saturation current temperature
exponent. Reverse breakdown is modelled by an exponential increase in the
reverse diode current and is determined by the parameters BV and IBV
(both of which are positive numbers).

IBV Current at breakdown voltage A 1e-10 ×

TNOM,
T_MEASURED

Parameter measurement
temperature

C 27

T_ABS If specified, defines the absolute
model temperature overriding
the global temperature defined
using .TEMP

C -

T_REL_
GLOBAL

Offsets global temperature
defined using .TEMP.
Overridden by T_ABS

C 0

TRS1 First order tempco RS /°C 0

TRS2 Second order tempco RS /°C2 0

TBV1 First order tempco BV /°C 0.0

TBV2 Second order tempco BV /°C2 0.0

NBV Reverse breakdown ideality
factor

1.0

NBVL Low-level reverse breakdown
ideality factor

1.0

IBVL Low-level reverse breakdown
knee current

Amp 0.0 ×

TIKF IKF temperature coefficient 0.0

Name Description Units Default Area
79

Simulator Reference Manual
Diode Model Parameters - Level = 3

Name Description Units Default

AF Flicker noise exponent 1.0

BV, VB, VAR,
VRB

Reverse breakdown voltage V 

CJO, CJ Zero bias junction capacitance F 0.0

CJSW, CJP Zero bias sidewall capacitance F 0.0

CTA CJO temp coefficient. (TLEVC=1) C-1

CTP CJSW temp coefficient. (TLEVC=1) C-1

EG Energy gap ev 1.11

FC Forward bias depletion capacitance
coefficient

0.5

FCS Forward bias sidewall capacitance
coefficient

0.5

GAP1 7.02e-4 - silicon (old value)
4.73e-4 - silicon
4.56e-4 - germanium
5.41e-4 - gallium arsenide

eV/° 7.02e-4

GAP2 1108 - silicon (old value)
636 - silicon
210 - germanium
204 - gallium arsenide

° 1108

IBV Current at breakdown voltage A 1E-3

IKF, IK High injection knee current A •

IKR Reverse high injection knee current A •

IS, JS Saturation current A 1E-14

ISR Recombination current A 0

JSW Sidewall saturation current A 0

KF Flicker noise exponent 0

MJ, M Grading coefficient 0.5

MJSW Sidewall grading coefficient 0.33

N, NF Forward emission coefficient 1.0

NR Recombination emission coefficient 2.0

PHP Sidewall built in potential PB

RS Series resistance  0

SHRINK Shrink factor 1.0
80

Chapter 4 Analog Device Reference
The parameters CJSW and JSW are scaled by the instance parameter PJ whose default
value is 0.0.

If L and W instance parameters are supplied, the diode is scaled by the factor:
M*(L*SHRINK-XW)*(W*SHRINK-XW)
otherwise it is scaled by M*AREA.

M and AREA are instance parameters which default to 1.0

Diode - Soft Recovery

Netlist Entry

Dxxxx n+ n- model_name [TEMP=local_temp]

n+ Anode

n- Cathode

model_name Name of model defined in a .MODEL statement (page 228).
Must begin with a letter but can contain any character except
whitespace and ' . ' .

local_temp Local temperature. Overrides specification in .OPTIONS
(page 237) or .TEMP (page 262) statements.

Diode Model Syntax

.model modelname SRDIO (parameters)

TCV BV temp coefficient C-1 0

TLEV Temperature model selector. Valid
values: 0, 1, 2

0

TLEVC Temperature model selector. Valid
values: 0 or 1

0

TNOM, TREF Parameter measurement temperature 27

TPB VJ temp coefficient (TLEVC=1) V/C 0.0

TPHP PHP temp. coefficient (TLEVC=1) V/C 0.0

TRS RS temp. coefficient C-1 0.0

TT Transit time S 0.0

VJ, PB Built-in potential V 0.8

XW Shrink factor 0.0

DCAP Capacitance model (1 or 2) 1

Name Description Units Default
81

Simulator Reference Manual
Soft Recovery Diode Model Parameters

Basic Equations

The model is based on the paper “A Simple Diode Model with Reverse Recovery” by
Peter Lauritzen and Cliff Ma. (See references). The model’s governing equations are
quite simple and are as follows:

In addition the model uses the standard SPICE equations for junction capacitance and
temperature dependence of IS.

References

Peter O. Lauritzen, Cliff L. Ma, A Simple Diode Model with Reverse Recovery, IEEE
Transactions on Power Electronics, Vol. 6, No 2, pp 188-191, April 1991.

Name Description Units Default

CJO Zero bias junction capacitance F 0.0

EG Energy gap ev 1.11

FC Forward bias depletion capacitance
coefficient

0.5

IS Saturation current A 1E-15

MJ Grading coefficient 0.5

N Forward emission coefficient 1.0

RS Series resistance  0

TNOM Parameter measurement temperature 27

TT Diffusion transit time S 5e-6

TAU Minority carrier lifetime 1e-5

VJ Built-in potential V 1

XTI Saturation current temperature
exponent

3

id

qe qm–

TT
------------------=

td

dqm qm

TAU

qe qm– 
TT

-----------------------–+ 0=

qe IS TAU
vd

N Vt
-------------- 
 exp 1– 

  =
82

Chapter 4 Analog Device Reference
GaAsFET

Netlist Entry

Zxxxx drain gate source modelname [area] [OFF] [IC=vds, vgs]

drain Drain node

gate Gate node

source Source node

modelname Name of model defined in a .model statement. Must begin with
a letter but can contain any character except whitespace and
period '.' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.
Default is one.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 236 for more details.

vds,vgs Initial conditions for drain-source and gate-source junctions
respectively. These only have an effect if the UIC parameter is
specified on the .TRAN statement.

GaAsFET Model Syntax

.model modelname NMF (parameters)

GaAsFET Model Parameters

The symbols '  ' and '  ' in the Area column means that parameter should be
multiplied or divided by the area factor respectively.

Name Description Units Default Area

VTO Pinch-off Voltage V -2.0

BETA Transconductance parameter A/V2 2.5e-3 

B Doping tail extending parameter 1/V 0.3

ALPHA Saturation voltage parameter 1/V 2

LAMBD
A

Channel length modulation
parameter

1/V 0

RD Drain ohmic resistance  0 

RS Source ohmic resistance  0 
83

Simulator Reference Manual
Notes The GaAsFET model is derived from the model developed by Statz. The
DC characteristics are defined by parameters VTO, B and BETA, which
determine the variation of drain current with gate voltage, ALPHA, which
determines saturation voltage, and LAMBDA, which determines the output
conductance. IS determines the gate-source and gate-drain dc
characteristics.

Two ohmic resistances are included. Charge storage is modelled by total
gate charge as a function of gate-drain and gate-source voltages and is
defined by the parameters CGS, CGD and PB.

Inductor (Ideal)

Netlist Entry

Lxxxx n1 n2 value [IC=init_cond] [BRANCH=0|1]

n1 Node 1

n2 Node 2

value Value in henries

init_cond Initial current in inductor. Only effective if UIC option is
specified on .TRAN statement.

BRANCH set to 0 or 1. 1 is default value. This parameter determines the
internal formulation of the inductor and affects how the IC
parameter is implemented. When BRANCH=1, the inductor
looks like a short circuit during DC operating point and the IC
parameter has no effect unless UIC is specified for a transient
analysis. If BRANCH=0, the inductor looks like a current
source during dc operating point with a magnitude equal to the
value of the IC parameter. BRANCH=0 makes it possible to
specify circuit startup conditions.

CGS Zero bias gate source capacitance F 0 

CGD Zero bias gate drain capacitance F 0 

PB Gate junction potential V 1

IS Gate p-n saturation current A 1e-14 

FC Forward bias depletion capacitance
coefficient

0.5

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

Name Description Units Default Area
84

Chapter 4 Analog Device Reference
See Also

Mutual Inductance page 131

Inductor (Saturable)

Netlist Entry

Lxxxx n1 n2 modelname [N=num_turns] [LE=le] [AE=ae] [UE=ue]

n1 Node 1

n2 Node 2

modelname Model name referring to a .MODEL statement describing the
core characteristics. See details below.

num_turns Number of turns on winding

le Effective path length of core in metres. Default = PATH/100.
PATH is defined in .MODEL.

ae Effective area of core in metres2. Default = AREA/10000 where
AREA is define in .MODEL.

ue Effective permeability of core. Overrides model parameter of
the same name.

Model format - Jiles-Atherton model with hysteresis

.MODEL model_name CORE parameters

Model format - simple model without hysteresis

.MODEL model_name CORENH parameters

Jiles-Atherton Parameters

Name Description Units Default

PATH Effective path length cm 1

C Domain flexing parameter 0.2

K Domain anisotropy parameter amp.m-1 500

MS Magnetisation saturation 1E6

GAP Air gap (centimetres) cm 0

GAPM Air gap (metres) m GAP/100
85

Simulator Reference Manual
Non-hysteresis Model Parameters

Notes on the Jiles-Atherton model

The Jiles-Atherton model is based on the theory developed by D.C. Jiles and
D.L.Atherton in their 1986 paper “Theory of Ferromagnetic Hysteresis”. The model
has been modified to correct non-physical behaviour observed at the loop tips whereby
the slope of the B-H curve reverses. This leads to non-convergence in the simulator.
The modification made is that proposed by Lederer et al. (See references below). Full
details of the SIMetrix implementation of this model including all the equations are
provided in a technical note. This is located on the install CDROM at Docs/Magnetics/
Jiles-Atherton-Model.pdf. This is also available at our web site, please visit “Further
Documentation” on page 53 for details.

The AHMODE parameter selects the equation used for the anhysteric function, that is
the non-linear curve describing the saturating behaviour. When set to 0 the function is
the same as that used by PSpice. When set to 1 the function is the original equation
proposed by Jiles and Atherton. See the Jiles-Atherton-Model.pdf technical note for
details.

If the UE parameters is specified either on the device line or in the model, an air gap
value is calculated and the parameters GAP and GAPM are ignored. See the Jiles-
Atherton-Model.pdf technical note for the formula used.

A Thermal energy parameter amp.m- 1000

AREA Effective area cm2 0.1

UE Effective permeability. Overrides GAP and
GAPM if >0. See notes

AHMODE Anhysteric function selector (see notes) 0

Name Description Units Default

PATH Effective path length cm 1

MS Magnetisation saturation 1E6

GAP Air gap (centimetres) cm 0

GAPM Air gap (metres) m GAP/100

A Thermal energy parameter amp.m- 1000

AREA Effective area cm2 0.1

AHMODE Anhysteric function selector (see notes) 0

Name Description Units Default
86

Chapter 4 Analog Device Reference
The parameter names and their default values for the Jiles-Atherton model are
compatible with PSpice, but the netlist entry is different.

Notes on the non-hysteresis model

This is simply a reduced version of the Jiles-Atherton model with the hysteresis effects
removed. The anhysteric function and the air-gap model are the same as the Jiles-
Atherton model.

Implementing Transformers

This model describes only a 2 terminal inductor. A transformer can be created using a
combination of controlled sources along with a single inductor. The SIMetrix
schematic editor uses this method.

The schematic editor provides a means of creating transformers and this uses an
arrangement of controlled sources to fabricate a non-inductive transformer. Any
inductor can be added to this arrangement to create an inductive transformer. The
method is simple and efficient. The following shows how a non-inductive three
winding transformer can be created from simple controlled sources:

F1 0 n1 E1 1
E1 W1A W1B n1 0 1
F2 0 n1 E2 1
E2 W2A W2B n1 0 1
F3 0 n1 E3 1
E3 W3A W3B n1 0 1

Connecting an inductor between n1 and 0 in the above provides the inductive
behaviour. This is in fact how the SIMetrix schematic editor creates non-linear
transformers.

Note that you cannot use the mutual inductor device with the saturable inductor.

Plotting B-H curves

Both models can be enabled to output values for flux density in Tesla and magnetising

force in A.m-1. To do this, add the following line to the netlist:

.KEEP Lxxx#B Lxxx#H

Replace Lxxx with the reference for the inductor. (e.g. L23 etc.). You will find vectors
with the names Lxxx#B Lxxx#H available for plotting in the waveform viewer.

References

1. Theory of Ferromagnetic Hysteresis, DC.Jiles, D.L. Atherton, Journal of
Magnetism and Magnetic Materials, 1986 p48-60.

2. On the Parameter Identification and Application of the Jiles-Atherton Hysteresis
Model for Numerical Modelling of Measured Characteristics, D Lederer, H
Igarashi, A Kost and T Honma, IEEE Transactions on Magnetics, Vol. 35, No. 3,
May 1999
87

Simulator Reference Manual
Insulated Gate Bipolar Transistor

Netlist Entry

Zxxxx collector gate emitter [AREA=area] [AGD=agd] [KP=kp]
[TAU=tau] [WB=wb]

collector Collector node

gate Gate node

emitter Emitter node

area Device area in m2 (overrides model parameter of the same
name)

agd Gate-drain overlap area in m2 (overrides model parameter of the
same name)

kp Transconductance (overrides model parameter of the same
name)

tau Ambipolar recombination lifetime (overrides model parameter
of the same name)

wb Base width in metres (overrides model parameter of the same
name)

Model syntax

.MODEL model_name NIGBT parameters

Name Description Units Default

AGD Gate-drain overlap area m2 5E-6

AREA Device active area m2 1E-5

BVF Breakdown voltage nonplanar junction factor 1.0

BVN Avalanche multiplication exponent 4.0

CGS Gate-source capacitance per unit area Fcm-2 1.24E-8

COXD Gate-drain overlap oxide capacitance per unit
area

Fcm-2 3.5E-8

JSNE Emitter electron saturation current density Acm-2 6.5E-13

KF Triode region MOSFET transconductance
factor

1.0
88

Chapter 4 Analog Device Reference
Notes

The IGBT model is based on the model developed by Allen R. Hefner at the National
Institute of Standards and Technology. The parameter names, default values and units
have been chosen to be compatible with the PSpice implementation of the same model.

For more information, please refer to:

Modelling Buffer Layer IGBT’s for Circuit Simulation, Allen R. Hefner Jr, IEEE
Transactions on Power Electronics, Vol. 10, No. 2, March 1995

An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator,
Allen R. Hefner, Jr., Daniel M. Diebolt, IEE Transactions on Power Electronics, Vol. 9,
No. 5, September 1994

Junction FET

Netlist Entry

Jxxxx drain gate source modelname [area] [OFF] [IC=vds,vgs]
+ [TEMP=local_temp] [M=mult] [DTEMP=dtemp]

drain Drain node

gate Gate node

source Source node

modelname Name of model defined in a .model statement. Must begin with
a letter but can contain any character except whitespace and
period '.' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.

KP MOSFET transconductance factor AV-2 0.38

MUN Electron mobility cm-2(Vs)-1 1.5E3

MUP Hole mobility cm-2(Vs)-1 4.5E2

NB Base doping concentration cm-3 2E14

TAU Ambipolar recombination lifetime s 7.1E-6

THETA Transverse field transconductance factor V-1 0.02

VT MOSFET channel threshold voltage V 4.7

VTD Gate-drain overlap depletion threshold V 1E-3

WB Metallurgical base width m 9.0E-5

Name Description Units Default
89

Simulator Reference Manual
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 236 for more details.

vds,vgs Initial conditions for drain-source and gate-source junctions
respectively. These only have an effect if the UIC parameter is
specified on the .TRAN statement (page 265).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 237) or .TEMP (page 262) statements.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence.

N Channel JFET: Model Syntax

.model modelname NJF (parameters)

P Channel JFET: Model Syntax

.model modelname PJF (parameters)

JFET: Model Parameters

The symbols '  ' and '  ' in the Area column means that parameter should be
multiplied or divided by the area factor respectively.

Name Description Units Default Area

VTO Threshold voltage V -2.0

VTOTC VTO temp coefficient V/C 0

BETA Transconductance parameter A/V2 1e-4 

BETATCE BETA temperature coefficient % 0

LAMDA Channel length modulation
parameter

1/V 0

ALPHA Impact ionisation coefficient 0

VK Impact ionisation knee voltage V 0

RS Source ohmic resistance  0 

CGS Zero-bias G-S junction
capacitance

F 0 

CGD Zero-bias G-D junction
capacitance

F 0 
90

Chapter 4 Analog Device Reference
Examples

Q2 is a U430 with a local temperature of 100C.

M Grading coefficient 1.0

PB Gate junction potential V 1

IS Gate junction saturation
current

A 1e-14 

N Gate junction emission
coefficient

1

ISR Recombination current 0

NR ISR emission coefficient

XTI IS temperature coefficient 3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Coefficient for forward bias
depletion capacitance

0.5

NLEV Select noise model 2

GDSNOI Channel noise coefficient. Use
with NLEV=3

1.0

TNOM,
T_MEASURED

Reference temperature; the
temperature at which the
model parameters were
measured

C 27

T_ABS If specified, defines the
absolute model temperature
overriding the global
temperature defined using
.TEMP

C -

T_REL_GLOBAL Offsets global temperature
defined using .TEMP.
Overridden by T_ABS

C 0.0

Name Description Units Default Area

Q2

U430 Temp=100

Q1

BF244
91

Simulator Reference Manual
Lossy Transmission Line

Netlist Entry

Oxxxx p1 n1 p2 n2 modelname [IC=v1,i1,v2,i2]

p1 Positive input port 1

n1 Negative input port 1

p2 Positive input port 2

n2 Negative input port 2

modelname Name of model defined in a .MODEL statement (page 228).
Must begin with a letter but can contain any character except
whitespace and period '.' .

v1,i1,v2,i2 Initial conditions for voltage at port 1, current at port 1, voltage
at port 2 and current at port 2 respectively. These only have an
effect if the UIC parameter is specified on the .TRAN statement
(page 265).

Model Syntax

.model modelname LTRA (parameters)

Model Parameters

The parameters REL and ABS control the way the line is simulated rather than its
electrical characteristics. More accurate results (at the expense of simulation time) can
be obtained by using lower values.

Notes The uniform RLC/RC/LC/RG transmission line model (LTRA) models a
uniform constant-parameter distributed transmission line. The LC case may
also be modelled using the lossless transmission line model. The operation
of the lossy transmission line model is based on the convolution of the
transmission line's impulse responses with its inputs.

Name Description Units Default

R Resistance/unit length /unit length 0.0

L Inductance/unit length Henrys/unit length 0.0

G Conductance/unit length Siemens(mhos)/unit length 0.0

C Capacitance/unit length Farads/unit length 0.0

LEN Length Required

REL Relative rate of change of derivative for breakpoint 1.0

ABS Absolute rate of change of derivative for breakpoint 1.0
92

Chapter 4 Analog Device Reference
The following types of lines have been implemented:

RLC Transmission line with series loss only
RC Uniform RC line
LC Lossless line
RG Distributed series resistance and parallel conductance

All other combinations will lead to an error.

REL and ABS are model parameters that control the setting of breakpoints.
A breakpoint is a point in time when an analysis is unconditionally
performed. The more there are the more accurate the result but the longer it
will take to arrive. Reducing REL and/or ABS will yield greater precision.

Example

The above could represent a 10 metre length of RG58 cable. The parameters would be
described in a .model statement e.g.

.model RG58_10m LTRA(R=0.1 C=100p L=250n LEN=10)

MOSFET

Note Level 1,2,3 and 17 MOSFETs are described in this section. For other
devices:

BSIM3 see page 100
BSIM4 see page 102
EKV see page 103
HiSim HV see page 104
PSP see page 105
MOS9, MOS11 and other NXP devices see page 138

Netlist Entry

Mxxxx drain gate source bulk modelname [L=length] [W=width]
+ [AD=drain_area] [AS=source_area]
+ [PD=drain_perimeter] [PS=source_perimeter]
+ [NRD=drain_squares] [NRS=source_squares]
+ [NRB=bulk_squares]
+ [OFF] [IC=vds,vgs,vbs] [TEMP=local_temp] [M=area]

drain Drain node

gate Gate node

RG58_10m

T1
93

Simulator Reference Manual
source Source node

bulk Bulk (substrate) node

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and period '.'

(The following 8 parameters are not supported by the level 17 MOSFET model)
length Channel length (metres).

width Channel width (metres).

drain_area Drain area (m2).

source_area Source area (m2).

drain_perimeter Drain perimeter (metres).

source_perimeter Source perimeter (metres).

drain_squares Equivalent number of squares for drain resistance

source_squares Equivalent number of squares for source resistance

gate_squares Equivalent number of squares for gate resistance. Level=3 only

bulk_squares Equivalent number of squares for gate resistance. Level=3 only

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See page 236
for more details.

vds, vgs, vbs Initial condition voltages for drain-source gate-source and
bulk(=substrate)-source respectively. These only have an effect
if the UIC parameter is specified on the .TRAN statement
(page 265).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 237) or .TEMP (page 262) statements.

dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence. Currently implemented only
for LEVEL 1,2 and 3.

Notes SIMetrix supports four types of MOSFET model specified in the model
definition. These are referred to as levels 1, 2, 3 and 7. Levels 1,2, and 3 are
the same as the SPICE2 and SPICE3 equivalents. Level 17 is proprietary to
SIMetrix. For further information see Level 17 MOSFET parameters
below.

NMOS Model Syntax

.model modelname NMOS (level=level_number parameters)

PMOS Model Syntax

.model modelname PMOS (level=level_number parameters)
94

Chapter 4 Analog Device Reference
MOS Levels 1, 2 and 3: Model Parameters

Name Description Units Default Levels

VTO or VT0 Threshold voltage V 0.0 all

KP Transconductance parameter A/V2 2.0e-5 all

GAMMA Bulk threshold parameter V 0.0 all

PHI Surface potential V 0.6 all

LAMBDA Channel length modulation 1/V 0.0 all

RG Gate ohmic resistance  0.0 1,3

RD Drain ohmic resistance  0.0 all

RS Source ohmic resistance  0.0 all

RB Bulk ohmic resistance  0.0 3

RDS Drain-source shunt
resistance

  3

CBD B-D junction capacitance F 0.0 all

CBS B-S junction capacitance F 0.0 all

IS Bulk junction sat. current A 1.0e-14 all

PB Bulk junction potential V 0.8 all

CGSO Gate-source overlap
capacitance

F/m 0.0 all

CGDO Gate-drain overlap
capacitance

F/m 0.0 all

CGBO Gate-bulk overlap
capacitance

F/m 0.0 all

RSH Drain and source diffusion
resistance

/sq. 0.0 all

CJ Zero bias bulk junction
bottom capacitance/sq-metre
of junction area

F/m2 See
note

all

MJ Bulk junction bottom grading
coefficient

0.5 all

CJSW Zero bias bulk junction
sidewall capacitance

F/m 0.0 all

MJSW Bulk junction sidewall
grading coefficient

0.5 1

MJSW as above 0.33 2,3

JS Bulk junction saturation
current/sq-metre of junction
area

A/m2 0.0 all
95

Simulator Reference Manual
JSSW Bulk p-n saturation sidewall
current/length

A/m 0.0 3

TT Bulk p-n transit time secs 0.0 3

TOX Oxide thickness metre 1e-7 all

NSUB Substrate doping 1/cm3 0.0 all

NSS Surface state density 1/cm2 0.0 all

NFS Fast surface state density 1/cm2 0.0 2,3

TPG Type of gate material:
 +1 opposite. to substrate
 -1 same as substrate
 0 Al gate

all

XJ Metallurgical junction depth metre 0.0 2,3

LD Lateral diffusion metre 0.0 all

UO Surface mobility cm2/Vs 600 all

UCRIT Critical field for mobility V/cm 0.0 2

UEXP Critical field exponent in
mobility degradation

0.0 2

UTRA Transverse field coefficient
(mobility)

0.0 1,3

VMAX Maximum drift velocity of
carriers

m/s 0.0 2,3

NEFF Total channel charge (fixed
and mobile) coefficient

1.0 2

FC Forward bias depletion
capacitance coefficient

0.5 all

TNOM,
T_MEASURED

Reference temperature; the
temperature at which the
model parameters were
measured

C 27 all

T_ABS If specified, defines the
absolute model temperature
overriding the global
temperature defined using
.TEMP

C .TEMP all

T_REL_GLOBAL Offsets global temperature
defined using .TEMP.
Overridden by T_ABS

C 0.0 all

KF Flicker noise coefficient 0.0 all

AF Flicker noise exponent 1.0 all

Name Description Units Default Levels
96

Chapter 4 Analog Device Reference
CJ Default

If not specified CJ defaults to (s*q* NSUB* 1e6 /(2*PB))
where
s = 1.03594314e-10 (permittivity of silicon)
q = 1.6021918e-19 (electronic charge)
NSUB, PB model parameters

Notes for levels 1, 2 and 3:

The three levels 1 to 3 are as follows:

LEVEL 1 Shichman-Hodges model. The simplest and is similar to the
JFET model

LEVEL 2 A complex model which models the device according to an
understanding of the device physics

LEVEL 3 Simpler than level 2. Uses a semi-empirical approach i.e. the
device equations are partly based on observed effects rather than
the theory governing its operation

The L and W parameters perform the same function as the L and W parameters on the
device line. If omitted altogether they are set to the option values (set with .OPTIONS
statement - see page 237) DEFL and DEFW respectively. These values in turn default
to 100 microns.

The above models differ from all other SIMetrix (and SPICE) models in that they
contain many geometry relative parameters. The geometry of the device (length, width
etc.) is entered on a per component basis and various electrical characteristics are
calculated from parameters which are scaled according to those dimensions. This is
approach is very much geared towards integrated circuit simulation and is
inconvenient for discrete devices. If you are modelling a particular device by hand we
recommend you use the level 17 model which is designed for discrete vertical devices.

DELTA Width effect on threshold
voltage

0.0 2,3

THETA Mobility modulation 1/V 0.0 3

ETA Static feedback 0.0 3

KAPPA Saturation field factor 0.2 3

W Width metre DEFW all

L Length metre DEFL all

NLEV Noise model 2 all

Name Description Units Default Levels
97

Simulator Reference Manual
MOS Level 17: Model Parameters

Name Description Units Default

VTO or
VT0

Threshold voltage V 0.0

KP Transconductance parameter A/V2 2.0e-5

GAMMA Bulk threshold parameter V 0.0

PHI Surface potential V 0.6

LAMBDA Channel length modulation 1/V 0.0

RD Drain ohmic resistance  0.0

RS Source ohmic resistance  0.0

CBD B-D junction capacitance F 0.0

CBS B-S junction capacitance F 0.0

IS Bulk junction sat. current A 1.0e-14

PB Bulk junction potential V 0.8

CGSO Gate-source overlap capacitance F 0.0

CGBO Gate-bulk overlap capacitance F 0.0

CJ Zero bias bulk junction bottom capacitance F 0.0

MJ Bulk junction bottom grading coefficient 0.5

CJSW Zero bias bulk junction sidewall capacitance F 0.0

MJSW Bulk junction sidewall grading coefficient 0.5

FC Forward bias depletion capacitance
coefficient

0.5

TNOM Parameter measurement temperature C 27

KF Flicker noise coefficient 0.0

AF Flicker noise exponent 1.0

CGDMAX Maximum value of gate-drain capacitance F 0.0

CGDMIN Minimum value of gate-drain capacitance F 0.0

XG1CGD cgd max-min crossover gradient 1.0

XG2CGD cgd max-min crossover gradient 1.0

VTCGD cgd max-min crossover threshold voltage V 0.0

TC1RD First order temperature coefficient of RD 1/C 0.0

TC2RD Second order temperature coefficient of RD 1/C2 0.0
98

Chapter 4 Analog Device Reference
Notes for level 17

In SIMetrix version 5.2 and earlier, this model used a level parameter value of 7
instead of the current 17. The number was changed so that a PSpice compatible BSIM3
model (level=7) could be offered. In order to retain backward compatibility, any level
7 model containing the parameters cgdmax, cgdmin, xg1cgd, xg2cgd or vtcgd will
automatically be switched to level=17.

The level 17 MOSFET was developed to model discrete vertical MOS transistors
rather than the integrated lateral devices that levels 1 to 3 are aimed at. Level 17 is
based on level 1 but has the following important additions and changes:

• New parameters to model gate-drain capacitance

• 2 new parameters to model rdson variation with temperature.

• All parameters are absolute rather than geometry relative. (e.g. capacitance is
specified in farads not farads/meter)

All MOSFET models supplied with SIMetrix are level 17 types. Many models
supplied by manufacturers are subcircuits made up from a level 1, 2 or 3 device with
additional circuitry to correctly model the gate-drain capacitance. While the latter
approach can be reasonably accurate it tends to be slow because of its complexity.

Gate-drain capacitance equation:

where v is the gate-drain voltage.
This is an empirical formula devised to fit measured characteristics. Despite this it has
been found to follow actual measured capacitance to remarkable accuracy.

To model gate-drain capacitance quickly and to acceptable accuracy set the five Cgd
parameters as follows:

1. Set CGDMIN to minimum possible value of Cgd i.e. when device is off and drain
voltage at maximum.

2. Set CGDMAX to maximum value of Cgd i.e. when device is on with drain-source
voltage low and gate-source voltage high. If this value is not known use twice the
value of Cgd for Vgd=0.

3. Set XG2CGD to 0.5, XG1CGD to 0.1 and leave VTCGD at default of 0.

Although the parasitic reverse diode is modelled, it is connected inside the terminal
resistances, RD and RS which does not represent real devices very well. Further,
parameters such as transit time (TT) which model the reverse recovery characteristics
of the parasitic diode are not included. For this reason it is recommended that the
reverse diode is modelled as an external component. Models supplied with SIMetrix
are subcircuits which include this external diode.

C v

v

gd    

 





(. . tan (().

(. . tan (().

0 5

0 5

1 1

1 1





VTCGD XG1CGD)).CGDMIN

+ VTCGD XG2CGD)).CGDMAX
99

Simulator Reference Manual
BSIM3 MOSFETs

Notes

The BSIM3 model is only available with the Micron versions of SIMetrix. Three
versions are supplied namely 3.1, 3.24 and 3.3. Our implementation of version 3.1
includes all bug fixes applied to the latest version but the device equations and
supported parameters are for the original version 3.1. See below to find out how to
switch versions.

BSIM3 models can be accessed using one of four values for the LEVEL parameter:

LEVEL=7 specifies a PSpice compatible model
LEVEL=8 specifies the standard Berkeley BSIM3 model.
LEVEL=49 specifies the Hspice implementation using the Hspice junction
capacitance model.
LEVEL=53 is also a Hspice version but uses the standard Berkeley junction cap
model.

The following PSpice parameters are supported when using level 7:
TT, L, W, RG, RD, RS, RB, RDS, JSSW

The following Hspice parameters are supported when using level 49/53:
CJGATE, HDIF, LDIF, WMLT, XL, XW, IS, N, NDS, VNDS, PHP,
LMLT, CTA, CTP, PTA, PTP, TREF, RD, RS, RDC, RSC, CBD, CBS, FC, TT,
LD, WD, EG, GAP1, GAP2, XLREF, XWREF, ACM, CALCACM, TLEV, TLEVC

The Hspice noise model is also supported for NLEV=0,1 and 2.

The 'M' instance parameter has also been implemented with all variants. This specifies
the number of equivalent parallel devices.

Additional temperature parameters:
All variants support the TEMP and DTEMP instance parameters. TEMP specifies
absolute temperature (Celsius) while DTEMP specifies the temperature relative to the
circuit global temperature.

All variants support the model parameters T_MEASURED (equivalent to TNOM),
T_ABS (as TEMP instance parameter) and T_REL_GLOBAL (as DTEMP instance
parameter)

Version Selector

The VERSION parameter can be specified to select which version is used. As detailed
above, SIMetrix supports three different BSIM3 versions although 8 versions have
been released by Berkeley. The following table shows which version will actually be
used according to the VERSION parameter value.
100

Chapter 4 Analog Device Reference
Note that a second decimal point will be ignored so 3.2.4 is the same as 3.24. If the
version parameter is set to a value not listed above, SIMetrix will raise an error
condition. This can be overridden by setting .OPTION AnyVersion.

Model Parameters

The parameters describing BSIM3 are documented in the original Berkeley manual.
See below. The following table lists parameters that are non-standard.

VERSION parameter Use BSIM3 Version

3.0 3.1

3.1 3.1

3.2 3.24

3.21 3.24

3.22 3.24

3.23 3.24

3.24 3.24

3.3 3.3

not specified 3.3

Name Description Units Default

TNOM,
T_MEASURED

Reference temperature; the temperature
at which the model parameters were
measured

C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

C .TEMP

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

C 0.0

VFBFLAG Capacitor model selector used by
Hspice. An error will be raised if this
parameter and the CAPMOD parameter
are set to values not supported by
SIMetrix

0

BINFLAG Parameter used by Hspice. An error will
be raised if this parameter is set to a
value other than zero

0

LREF Ignored

WREF Ignored
101

Simulator Reference Manual
Further Documentation

Original Berkeley documentation is provided on the CDROM and at our web site.
Please visit “Further Documentation” on page 53 for details.

Process Binning

BSIM3 devices may be binned according to length and width. Refer to “Model
Binning” on page 47 for details.

BSIM4 MOSFETs

Notes

The BSIM4 model is only available with the Micron versions of SIMetrix.

BSIM4 models are accessed using LEVEL=14.

Versions 4.21, 4.3, 4.4 and 4.5 are currently supported. To set the version to be used,
use the VERSION parameter as defined in the following table:

SFVTFLAG Ignored

TT Level = 7 only. Reverse diode transit
time

S 0.0

L Level = 7 only. Channel length.
Overridden by instance parameter

m DEFL
option

W Level = 7 only. Channel width.
Overridden by instance parameter

m DEFW
option

RG Level = 7 only. Gate resistance 0.0

RD Level = 7 only. Drain resistance  0.0

RS Level = 7 only. Source resistance  0.0

RB Level = 7 only. Bulk resistance  0.0

RDS Level = 7 only. Drain-source leakage
resistance

 

JSSW Level = 7 only. Alias for JSW. F/m 0.0

Name Description Units Default
102

Chapter 4 Analog Device Reference
Note that a second decimal point will be ignored so 4.2.1 is the same as 4.21. If the
version parameter is set to a value not listed above, SIMetrix will raise an error
condition. This can be overridden by setting .OPTION AnyVersion.

The implementation is standard Berkeley but with the addition of the 'M' instance
parameter which specifies the number of equivalent parallel devices.

Further Documentation

Original Berkeley documentation is provided on the CDROM and at our web site.
Please visit “Further Documentation” on page 53 for details. Note the document covers
version 4.61 of the model. Earlier versions are available from the BSIM3/4 web site at
http://www-device.eecs.berkeley.edu/~bsim3.

Process Binning

BSIM4 devices may be binned according to length and width. Refer to “Model
Binning” on page 47 for details. Note the multi-fingered devices are binned according
to width per finger. This is a change from SIMetrix versions 5.3 and earlier. To restore
behaviour of the earlier versions, set option BinOnTotalWidth using:

.options BinOnTotalWidth

EKV MOSFETs

Notes

This is the Enz-Krummenacher-Vittoz MOSFET model version 2.6 and is only
available with the Micron versions of SIMetrix.

VERSION parameter Use BSIM4 version

4.0 4.21

4.1 4.21

4.2 4.21

4.21 4.21

4.3 4.3

4.4 4.4

4.5 4.5

4.6 4.6

4.61 4.61

Omitted 4.61

Other See notes
103

Simulator Reference Manual
The models are accessed using LEVEL=44.

Our version implements the full charge conserving capacitance model but in the
absence of benchmark circuits this is not yet fully tested. The DC characteristics have
been successfully tested using published test circuits and results.

HiSim HV MOSFET

Notes

The HiSim HV model is accessed as LEVEL=62 and is available with the Micron
versions of SIMetrix. The device may have up to 6 terminals and the netlist format is
as follows:

Mxxx drain gate source bulk [substrate [temperature]] modelname
instance_parameters

The substrate and temperature nodes are internally connected to ground if they are
omitted. Currently we have no information about whether this is the expected
behaviour.

Most mainstream models that we implement, such as BSIM3 and BSIM4, we alter to
clean up the various error and warning messages that they emit. In particular we make
the appropriate changes to ensure the messages are displayed in the list file. This is a
time consuming task and generally has to be repeated for new versions. We have not
done this work for this model and so most of the warning and error messages are as the
original designers provided and are directed to “stdout” or “stderr”. This means that
you will not see them when using SIMetrix via the GUI unless you specifically enable
a feature that directs the simulator’s stdout and stderr output to the front end. This can
be done by typing the following at the command line:

Set EnableSimStdout
Set EnableSimStderr

If running the simulator in ‘console’ mode, the stdout and stderr messages will be
displayed in the console (‘terminal’ in Linux) without needing any special
configuration.

This model may be binned on length and width in a similar manner to the BSIM3
model. See “Model Binning” on page 47.

MOSFET GMIN Implementation

GMIN is a conductance added to all non-linear devices to improve DC convergence.
For LEVEL 1-3 and LEVEL 17 MOSFETs, the default GMIN is implemented as
shown below:
104

Chapter 4 Analog Device Reference
This is compatible with SPICE and earlier versions of SIMetrix.

For BSIM3, BSIM4 and EKV devices, and also for LEVEL1-3 and LEVEL 17 devices
if the NEWGMIN .OPTIONS setting is set, the GMIN implementation is:

OLDMOSGMIN is a .OPTIONS setting with the default value of zero. MOSGMIN is
also a .OPTIONS setting with the default value of GMIN. Using the above
configuration with OLDMOSGMIN =0 often converges faster especially if the
Junction GMIN stepping algorithm is used.

PSP MOSFET

Netlist Entry

Mxxxx drain gate source bulk modelname [instance_parameters]

Where:
drain Drain node

gate Gate node

source Source node

bulk Bulk node

modelname Model name referring to a .MODEL statement

instance_parameters List of name/parameter pairs in form name=value. name maybe
any of the following:

W, L, AS, AD, PS, PD, MULT, SA, SB, ABSOURCE,
LSSOURCE, LGSOURCE, ABDRAIN, LSDRAIN,
LGDRAIN

GMIN

GMIN

MOSGMIN

OLDMOSGMIN

OLDMOSGMIN
105

Simulator Reference Manual
Refer to PSP documentation (see below) for further details.

NMOS Model Syntax Version 101.0

MODEL modelname NMOS LEVEL=1010 parameters

OR

.MODEL modelname PSP101 type=1 parameters

PMOS Model Syntax Version 101.0

.MODEL modelname PMOS LEVEL=1010 parameters

OR

.MODEL modelname PSP101 type=-1 parameters

NMOS Model Syntax Version 102.3

MODEL modelname NMOS LEVEL=1023 parameters

OR

.MODEL modelname PSP102 type=1 parameters

PMOS Model Syntax Version 102.3

.MODEL modelname PMOS LEVEL=1023 parameters

OR

.MODEL modelname PSP102 type=-1 parameters

Refer to PSP documentation (see below) for details of parameters

Notes

This is a model jointly developed by NXP (formerly Philips Semiconductor) and
Pennsylvania State University.

Two versions are provided:
1. 101.0, non-binning, non-NQS geometric version.

2. 102.3, non-binning, non-NQS geometric version.

The model was implemented from the Verilog-A description.

Other versions of the PSP model are available from the NXP SIMKIT devices. See
“SIMKIT Devices” on page 139

Documentation for the model is supplied on the install CDROM and at our web site.
Please refer to “Further Documentation” on page 53 for details.
106

Chapter 4 Analog Device Reference
Resistor

Netlist Entry

Rxxxx n1 n2 [model_name] [value] [L=length] [W=width]
[ACRES=ac_resistance] [TEMP=local_temp] [TC1=tc1] [TC2=tc2]
[M=mult] [DTEMP=dtemp]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model. Must begin with a letter but can
contain any character except whitespace and ' . '

value Resistance (W)

length Length of resistive element in metres. Only used if value is
omitted. See notes below

width Width of resistive element in metres. Only used if value is
omitted. See notes below

ac_resistance Resistance used for AC analyses and for the calculation of
thermal noise. If omitted, value defaults to final resistance
value.

local_temp Resistor temperature (°C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified
relative to circuit temperature. If both TEMP and DTEMP are
specified, TEMP takes precedence.

Notes

• If model_name is omitted, value must be specified.

• If model_name is present and value is omitted, length and width must be
specified in which case the value of the resistance is RES * RSH * L/W where
RSH is the sheet resistance model parameter and RES is the resistance multiplier.
See model parameters below. If ACRES is specified and non-zero its value will
be used unconditionally for AC analyses and the calculation of thermal noise.

Resistor Model Syntax

.model modelname R (parameters)
107

Simulator Reference Manual
Resistor Model Parameters

Notes

The flicker noise parameters are proprietary to SIMetrix. Flicker noise voltage is:

Vn
2 = KF * RSH2/(L*W) * Vr

2 * f/fEF

Where:
Vr = Voltage across resistor.

The equation has been formulated so that KF is constant for a given resistive material.

If one of L, W is not specified, the flicker noise voltage becomes:

vn
2 = KF * R2 * Vr

2 * f/fEF

Where R is the final resistance.

i.e. the noise current is independent of resistance. This doesn't have any particular basis
in physical laws and is implemented this way simply for convenience. When resistor
dimensions and resistivity are unavailable, the value of KF will need to be extracted
for each individual value.

Resistor - Hspice Compatible

Netlist Entry

Rxxxx n1 n2 [model_name] [value] [L=length] [W=width]

Name Description Units Default

RES Resistance multiplier 1

TC1 First order temperature coefficient 1/C 0

TC2 Second order temperature coefficient 1/C2 0

RSH Sheet resistance /sq 0

KF Flicker noise coefficient m2/2 0

EF Flicker noise exponent 1

TNOM,
T_MEASURED

Reference temperature; the temperature
at which the model parameters were
measured

C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

C .TEMP

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

C 0.0
108

Chapter 4 Analog Device Reference
[AC=ac_resistance] [TC1=tc1] [TC2=tc2] [M=mult] [SCALE=scale]
[DTEMP=dtemp] [C=c]

model_name Name of .MODEL. This is compulsory unless this model is re-
mapped as the default resistor using a device configuration file.
See “Customising Device Configuration” on page 50

value Value of resistor. This may be an expression relating parameters
defined using .PARAM and circuit variables in the form
V(n1,n2) and I(device). Expressions must be enclosed in curly
braces or quotation marks. Typically the expression relates to
the resistor’s own terminals in order to define voltage
dependence

length Length in metres

width Width in metres

ac_resistance Value of resistor for AC analyses. Like the main value, this may
also be an expression. See above under value for details

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

mult Device multiplier. Equivalent to putting mult devices in parallel,
but note that this value does not have to be integral

scale Scales resistance and capacitance values. E.g. Reff=scale*R

dtemp Differential temperature. Device temperature = global
temperature + dtemp

c Capacitance to reference node

Resistor Model Syntax

.model modelname R (LEVEL=2 parameters)

Name Description Units Default

BULK Bulk connection for capacitance Ground

CAP Device capacitance F 0.0

CAPSW Sidewall capacitance F/m 0.0

COX Capacitance per unit area F/m2 0.0

CRATIO Capacitance terminal distribution 0.5

DI Dielectric constant 0.0

DL Difference between drawn length and
actual length for capacitance calculation

m DW

DLR Difference between drawn length and
actual length for resistance calculation

m 0.0
109

Simulator Reference Manual
Resistance Calculation

In the following reff is the effective non-temperature adjusted resistance used for DC
analyses, reffac is the effective non-temperature adjusted resistance used for AC
analyses.

If instance resistance is specified:

reff = value * SCALE/M

otherwise if weff*leff*RSH>0

reff = SCALE*RSH*leff / (weff*M)

DW Difference between drawn width and
actual width

m 0.0

L, ML Length m 0.0

W, MW Width m 0.0

NOISE Noise multiplier 1.0

RAC AC resistance 

RES Resistance  0.0

RSH Sheet resistance sq 0.0

SHRINK Shrink factor 1.0

TC1C Capacitance first order temperature
coefficient

1/C 0.0

TC1R Resistance first order temperature
coefficient

1/C 0.0

TC2C Capacitance second order temperature
coefficient

1/C2 0.0

TC2R Resistance second order temperature
coefficient

1/C2 0.0

THICK Dielectric thickness m 0.0

TREF Measurement temperature C TNOM

ACRESMOD AC resistance model selector. See
“ACRESMOD Parameter” on page 112

0

KF Flicker noise coefficient 0

AF Flicker noise current exponent 2.0

LF Flicker noise length exponent 1.0

WF Flicker noise width exponent 1.0

EF Flicker noise frequency exponent 1.0

Name Description Units Default
110

Chapter 4 Analog Device Reference
where:
weff = SHRINK*W - 2*DW

leff = SHRINK*L - 2*DLR

otherwise

reff = SCALE*RES/M

If instance AC parameter is specified:

raceff = AC*SCALE/M

otherwise if RAC given

raceff = SCALE*RAC/M

otherwise

raceff = reff

Capacitance Calculation

capeff is the non temperature adjusted capacitance.

If instance parameter C is given:

capeff = M*SCALE*C

otherwise if model parameter CAP is given

capeff = M*SCALE*CAP

otherwise

capeff = (leffc*weffc*coxmod + 2*((leffc+weffc)*CAPSW))*M*SCALE

where:
leffc = SHRINK*L - 2*DL

weffc = SHRINK*W - 2*DW

See below for coxmod calculation

BULK

capef f * (1-CRATIO)capef f * CRATIO
111

Simulator Reference Manual
Calculation of COX

If COX given

coxmod = COX

otherwise if THICK <> 0 AND DI<>0

coxmod = 8.8542149e-012*DI/THICK

otherwise if THICK <> 0 AND DI=0

coxmod = 3.453148e-011/THICK

otherwise

coxmod = 0.0

Temperature Scaling

Resistance

R(t) = reff * tscale

where:

tscale = 1+(tc1inst+tdelta*tc2inst)*tdelta

where
tdelta = tinst-TREF-273.15

tc1inst = if instance TC1 given: TC1 else TC1R

tc2inst = if instance TC2 given: TC2 else TC2R

tinst = [global circuit temperature] + DTEMP (Kelvin)

Capacitance

C(t) = capeff * tscale

where
tcscale = 1+(TC1C+tdelta*TC2C)*tdelta

tdelta defined above.

Flicker Noise

ACRESMOD Parameter

This parameter controls the calculation of resistance in AC analysis. With
ACRESMOD=0 AC analysis uses the large signal resistance value, that is the value of

In
KF I

AF

Leff
LF

Weff
WF

f
EF

---=
112

Chapter 4 Analog Device Reference
resistance calculated during the DC analysis. If ACRESMOD=1, the small signal
resistance is used, that is, the value of dv/di at the operating point. If the resistance is
defined as an expression containing circuit variables (i.e. it is voltage dependent), the
large signal resistance is different to the small signal resistance.

This resistor model has been developed primarily for compatibility with Hspice
models. Hspice itself always uses the large signal resistance. However, this will create
a discrepancy between AC analysis and a transient analysis of a small signal. To
resolve this discrepancy, set ACRESMOD to 1.

In summary, to be compatible with Hspice, use ACRESMOD=0, for consistent results
between AC and transient analyses, use ACRESMOD=1.

In noise analysis the large signal value is always used.

Making the Hspice Resistor the Default

This resistor model requires the specification of a model name and the creation of a
.MODEL statement with LEVEL=2. This is likely to be inconvenient if a model file
containing Hspice resistors is being used.

To overcome this, a device configuration file can be created that maps this resistor
model to the default. For full details see “Customising Device Configuration” on
page 50. The line required to make this resistor the default is:

ModelName=R,Device=HspiceRes,Level=0

CMC Resistor

Netlist entry:

Uxxxx n1 nc n2 model_name parameters

Model Format

.MODEL model_name R3_CMC model_parameters

Full details of this model can be found in the document
r3_cmc_release1.0.0_2007Jun12.pdf which may be found on the CDROM and at our
web site. Please refer to “Further Documentation” on page 53 for details.

S-domain Transfer Function Block

Netlist entry:

Axxxx input output model_name
113

Simulator Reference Manual
Connection details

Model format

.MODEL model_name s_xfer parameters

Model parameters

Description

This device implements an arbitrary linear transfer function expressed in the frequency
domain using the 'S' variable. The operation and specification of the device is
illustrated with the following examples.

Name Description Flow Default
type

Allowed
types

in Input in v v, vd, i, id

out Output out v v, vd, i, id

Name Description Type Default Limits Vector
bounds

in_offset Input offset real 0 none n/a

gain Gain real 1 none n/a

laplace Laplace expression
(overrides num_coeff
and den_coeff)

string none none n/a

num_coeff Numerator
polynomial coefficient

real
vector

none none 1 - 

den_coeff Denominator
polynomial coefficient

real
vector

none none 1 - 

int_ic Integrator stage initial
conditions

real
vector

0 none none

denormalized_freq Frequency (radians/
second) at which to
denormalize
coefficients

real 1 none n/a
114

Chapter 4 Analog Device Reference
Examples

Example 1 - A single pole filter

Model for above device:

.model Laplace s_xfer laplace="1/(s+1)" denormalized_freq=1

This is a simple first order roll off with a 1 second time constant as shown below

Example 1 Frequency response

Example 2 - Single pole and zero

.model Laplace s_xfer
+ laplace="(1/s)/(1/s + 1/(0.1*s+1))"
+ denormalized_freq=1

LAP1-OUTP

LAP1
1/(s+1)

V1
 AC 1 0

1K
R1

Frequency / Hertz

10m 20m 40m 100m 200m 400m 1 2 4 10

20m

40m

100m

200m

400m

1

115

Simulator Reference Manual
The laplace expression has been entered how it might have been written down without
any attempt to simplify it. The above actually simplifies to (0.1*s+1)/(1.1*s+1)

Example 2 Frequency response

Example 3 - Underdamped second order response

.model Laplace s_xfer
+ laplace="1/(s2+1.1*s+1)"
+ denormalized_freq=2k

The above expression is a second order response that is slightly underdamped. The
following graph shows the transient response.

Frequency / Hertz

10m 20m 40m 100m 200m 400m 1 2 4 10

100m

200m

500m

1

116

Chapter 4 Analog Device Reference
Example 3 Frequency response

Example 4 - 5th order Chebyshev low-pass filter

The S-domain transfer block has a number of built in functions to implement standard
filter response. Here is an example. This is a 5th order chebyshev with -3dB at 100Hz
and 0.5dB passband ripple.

.model Laplace s_xfer
+ laplace="chebyshevLP(5,100,0.5)"
+ denormalized_freq=1

and the response:

Time/mSecs 2mSecs/div

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

117

Simulator Reference Manual
Example 3 Frequency response

The Laplace Expression

As seen in the above examples, the transfer function of the device is defined by the
model parameter LAPLACE. This is a text string and must be enclosed in double
quotation marks. This may be any arithmetic expression containing the following
elements:

Operators:
+ - * / ^
^ means raise to power. Only integral powers may be specified.

Constants
Any decimal number following normal rules. SPICE style engineering suffixes are
accepted.

S Variable
This can be raised to a power with '^' or by simply placing a constant directly after it
(with no spaces). E.g. s^2 is the same as s2.

Filter response functions
These are:

BesselLP(order, cut-off)Bessel low-pass
BesselHP(order, cut-off)Bessel high-pass
ButterworthLP(order, cut-off)Butterworth low-pass
ButterworthHP(order, cut-off)Butterworth high-pass
ChebyshevLP(order, cut-off, passband_ripple)Chebyshev low-pass
ChebyshevHP(order, cut-off, passband_ripple)Chebyshev high-pass

Where:
order Integer specifying order of filter. There is no maximum limit but

in practice orders larger than about 50 tend to give accuracy

Frequency / Hertz

1 2 4 10 20 40 100 200 400 1k1µ

10µ

100µ

1m

10m

100m

1

118

Chapter 4 Analog Device Reference
problems.

cut-off -3dB Frequency in Hertz

passband_ripple Chebyshev only. Passband ripple spec. in dB

Defining the Laplace Expression Using Coefficients

Instead of entering a Laplace expression as a string, this can also be entered as two
arrays of numeric coefficients for the numerator and denominator. In general this is
less convenient than entering the expression directly, but has the benefit that it supports
the use of parameters. In this method, use the NUM_COEFF and DEN_COEFF
parameters instead of the LAPLACE expression.

The following simple example, demonstrates the method

.param f0=10

.param w0 = {2*3.14159265*f0}

.model laplace s_xfer num_coeff = [1] den_coeff = [{1/w0},1]

Other Model Parameters

• DENORMALISED_FREQ is a frequency scaling factor.

• INT_IC specifies the initial conditions for the device. This is an array of
maximum size equal to the order of the denominator. The right-most value is the
zero’th order initial condition.

• NUM_COEFF and DEN_COEFF - see “Defining the Laplace Expression Using
Coefficients” above

• GAIN and IN_OFFSET are the DC gain and input offset respectively

Limitations

SIMetrix expands the expression you enter to create a quotient of two polynomials. If
the constant terms of both numerator and denominator are both zero, both are divided
by S. That process is repeated until one or both of the polynomials has a non-zero
constant term.

The result of this process must satisfy the following:

• The order the denominator must be greater than or equal to that of the numerator.

• The constant term of the denominator may not be zero.

The XSPICE S_XFER model

The SIMetrix Laplace transfer model is compatible with the original XSPICE version
but the transient analysis portion of it has been completely rewritten. The original
XSPICE version was seriously flawed and would only give accurate results if the
timestep was forced to be very small. Further, convergence would fail if the device was
used inside a feedback loop.
119

Simulator Reference Manual
The ability to enter the laplace transform as an arbitrary expression is a SIMetrix
enhancement. The original version required the user to enter the coefficients of the
numerator and denominator explicitly. The filter response functions are also a SIMetrix
enhancement.

Subcircuit Instance

Netlist Entry

Xxxxx n1 n2 n3 ... subcircuit_name [pinnames: pin1 pin2 pin3 ...]
[[params:] [M=m] expression1 expression2]

n1, n2 etc. Subcircuit nodes

pin1, pin2 etc. If the pinnames: keyword is included the names following it
will be used to name subcircuit current vectors generated by the
simulator.

subcircuit_name Subcircuit name referred to in subcircuit definition (i.e. with
.SUBCKT statement page 261)

m Multiplier. If present, the subcircuit will be multiplied by m as if
there were m devices in parallel. m may be an expression in
which case it must be enclosed by curly braces: ‘{‘, ‘}’.

Note that the multiplication is performed by scaling the internal
devices not by actually replicating the subcircuit. Non integral
values of m are thus permitted. Some types of device can not
currently be scaled and subcircuits containing them will not
support M. An error will displayed in this case.

M will be interpreted as a regular parameter and will not scale
the subcircuit instance if M is declared as a parameter in the
.SUBCKT line or the following option setting is included in the
netlist:

.OPTIONS DisableSubcktMultiplier

expression1 etc. Parameter expressions. See “Using Expressions” on page 31.

See “Subcircuits” on page 44 for more information.

Transmission Line

Netlist Entry

Txxxx p1 n1 p2 n2 Z0=impedance [TD=delay] [F=frequency
[NL=norm_length]] [rel=rel] [abs=abs]

p1 Positive input port 1

n1 Negative input port 2
120

Chapter 4 Analog Device Reference
p2 Positive input port 1

n2 Negative input port 2

impedance characteristic impedance

delay Line delay (Seconds)

frequency Alternative means of specifying delay=norm_length/frequency

norm_length See frequency. Default 0.25 if omitted.

TD takes precedence over NL/F. Either TD or F must be specified.

These remaining parameters control the way the line is simulated rather than its
electrical characteristics. More accurate results (at the expense of simulation time) can
be obtained by using lower values.

rel Relative rate of change of derivative for breakpoint

abs Absolute rate of change of derivative for breakpoint

Example

The above line has an impedance of 50 and a delay of 1S.

Voltage Controlled Current Source

Netlist Entry

Gxxxx nout+ nout- vc+ vc- transconductance

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

vc- Negative control node

transconductance Output current/Input voltage (Siemens or mhos)

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most operational amplifier models for
example use several polynomial sources). In general, however the arbitrary source (see
page 54) is more flexible and easier to use.

The netlist format for a polynomial source is:

Z0=50 TD=1u

T1
121

Simulator Reference Manual
Gxxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2- ...
+ polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See “Polynomial Specification” on page 75

Voltage Controlled Switch

Netlist Entry

Sxxxx nout1 nout2 vc+ vc- modelname

nout1 Switch node 1

nout2 Switch node 2

vc+ Positive control node

vc- Negative control node

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and period '.' .

Voltage Controlled Switch Model Syntax

.model modelname VSWITCH (parameters)

OR
.model modelname SW (parameters)

Voltage Controlled Switch Model Parameters

Voltage Controlled Switch Notes

The voltage controlled switch is a type of voltage controlled resistor. Between VON
and VOFF the resistance varies gradually following a cubic law.

Name Description Units Default

RON On resistance  1

ROFF Off resistance  1/GMIN

VON Voltage at which switch begins to turn on V 1

VOFF Voltage at which switch begins to turn off V 0
122

Chapter 4 Analog Device Reference
GMIN is a simulation parameter which defaults to 10-12 but which can changed using
the .OPTIONS statement (page 237).

The SIMetrix voltage controlled switch is compatible with PSpice but is
incompatible with the standard SPICE 3 version. The latter has an abrupt switching
action which can give convergence problems with some circuits.

Voltage Controlled Voltage Source

Netlist Entry

Exxxx nout+ nout- vc+ vc- gain

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

vc- Negative control node

gain Output voltage/Input voltage

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for ICs. (Most opamp models for example use several
polynomial sources). In general, however the arbitrary source is more flexible and
easier to use.

The netlist format for a polynomial source is:

Exxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2- ...
polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See “Polynomial Specification” on page 75

Voltage Source

Netlist Entry

Vxxxx n+ n- [[DC] dcvalue] [DCOP] [INFCAP] [AC magnitude
[phase]] [transient_spec]

N+ Positive node

N- Negative node

DCOP If this is specified, the voltage source will only be active during
the DC operating point solution. In other analyses, it will behave
123

Simulator Reference Manual
like an open circuit. This is an effective method of creating a
‘hard’ initial condition. See “Alternative Initial Condition
Implementations” on page 222 for an example.

INFCAP If specified, the voltage source will behave as an infinite
capacitor. During the DC operating point solution it will behave
like an open circuit. In the subsequent analysis, it will behave
like a voltage source with a value equal to the solution found
during the operating point. Note that the device is inactive for
DC sweeps - as all capacitors are.

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

transient_spec Specification for time varying source as described in the
following table.

Pulse Source

PULSE (v1 v2 [td [tr [tf [pw [per]]]]])

Where:

Type Description Page

PULSE Pulse source. Also generates, ramps, sawtooths
and triangles

124

PWL Piece wise linear source. Can create any waveform 126

PWLFILE As PWL but get definition from a file 126

SIN Sine wave 127

EXP Exponential signal 128

SFFM Single frequency FM 129

NOISE Real time noise source 129

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td Delay time (S) Default if omitted = 0
124

Chapter 4 Analog Device Reference
SIMetrix deviates from standard SPICE in the action taken for a pulse width of zero.
Standard SPICE treats a zero pulse width as if it had been omitted and changes it to the
stop time. In SIMetrix a zero pulse width means just that.

Both the above examples give a pulse lasting 5S with a period of 10S, rise and fall
times of 100nS and a delay of 0. The voltage source has a 0V base line and a pulse of
5V while the current source has a 0mA base line and a pulse of 1mA.

Examples

tr Rise time (S) Default if omitted, negative or zero = Time
stepa

tf Fall time (S) Default if omitted, negative or zero = Time
step

pw Pulse width (S) Default if omitted or negative = Stop timeb

per Period (S) Default if omitted, negative or zero = Stop
time

a. Time step is set up by the .TRAN simulator statement which defines a transient
analysis. Refer to “.TRAN” on page 265

b. Stop time refers to the end time of the transient analysis.

Name Description Default

  TD

  TR

t=0

PW   

 PER

TF

V1
pulse (0 5 0 100n 100n 5u 10u)

I1
pulse (0 1mA 0 100n 100n 5u 10u)
125

Simulator Reference Manual
Piece-Wise Linear Source

PWL (t1 v1 [t2 v2 [t3 v3 [...]]])

Each pair of values (ti vi) specifies that the value of the source is vi at time = ti. The
value of the source at intermediate values of time is determined by using linear
interpolation on the input values.

Although the example given below is for a voltage source, the PWL stimulus may be
used for current sources as well.

Example

Gives:-

PWL File Source

PWLFILE filename

This performs the same function as the normal piece wise linear source except that the
values are read from a file named filename.

The file contains a list of time voltage pairs in text form separated by any whitespace
character (space, tab, new line). It is not necessary to add the '+' continuation character
for new lines but they will be ignored if they are included. Any non-numeric data
contained in the file will also be ignored.

V1
pwl (0 -5 10n -5 11n -3 17n -3 18n -7 50n -7)

Time/nSecs 20nSecs/div

0 20 40 60 80 100

V

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

1: :r1_p
126

Chapter 4 Analog Device Reference
Notes

The PWLFILE source is considerably more efficient at reading large PWL definitions
than the standard PWL source. Consequently it is recommended that all PWL
definitions with more than 200 points are defined in this way.

The data output by Show /file is directly compatible with the PWLFILE source making
it possible to save the output of one simulation and use it as a stimulus for another. It is
recommended, however, that the results are first interpolated to evenly spaced points
using the Interp() function.

The use of engineering suffixes (e.g. k, m, p etc.) is not supported by PWLFILE.

The PWLFILE source is a feature of SIMetrix and does not form part of standard
SPICE.

Note, you can use the simulator statements .FILE and .ENDF to define the contents of
the file. E.g.

Vpwl1 N1 N2 PWLFILE pwlSource
...
.FILE pwlSource
...
...
.ENDF

This will be read in much more efficiently than the standard PWL and is recommended
for large definitions. See “.FILE and .ENDF” on page 213 .

Sinusoidal Source

SIN[E] (vo va [freq [delay [theta [phase]]]])

Where:

The shape of the waveform is described by:

Name Description Default

vo Offset (V,A) Compulsory

va Peak (V,A) Compulsory

freq Frequency (Hz) Default if omitted or zero= 1/Stop timea

a. Stop time refers to the end time of the transient analysis.

delay Delay (seconds) Default if omitted = 0

theta Damping factor (1/
seconds)

Default if omitted = 0

phase Phase in degrees Default if omitted = 0
127

Simulator Reference Manual
0 to delay: vo

delay to Stop time vo + va.e-(t-delay)..theta.sin(2..(freq.(t - delay) + phase/360))

Example

Gives output of:

Exponential Source

EXP (v1 v2 [td1 [tau1 [td2 [tau2]]]])

Where:

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td1 Rise delay time Default if omitted or zero: 0

tau1 Rise time constant Default if omitted or zero: Time stepa

td2 Fall delay time Default if omitted or zero: td1 + Time step

tau2 Fall time constant Default if omitted or zero: Time step

V1
sin (0 1 100meg 10nS)

Time/nSecs 5nSecs/div

0 5 10 15 20 25

V

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1: :r1_p
128

Chapter 4 Analog Device Reference
Defined by:
td1 to td2: v1 + (v2 - v1). [1 - e-(t-td1)/tau1]
td2 to stop time: v1 + (v2 - v1). [1 - e-(t-td1)/tau1] + v1 + (v2 - v1). [1 - e-(t-td2)/tau2]

Single Frequency FM

SFFM (vo va [fc [mdi [fs]]])

Where:

Defined by: vo + va.sin[2..fc.t + mdi.sin(2..fs.t)]

Noise Source

noise interval rms_value [start_time [stop_time]]

Source generates a random value at interval with distribution such that spectrum of
signal generated is approximately flat up to frequency equal to 1/(2*interval).
Amplitude of noise is rms_value volts. start_time and stop_time provide a means of
specifying a time window over which the source is enabled. Outside this time window,
the source will be zero. If stop_time is omitted or zero a value of infinity will be
assumed.

Extended PWL Source

PWLS [TIME_SCALE_FACTOR=time_factor]
[VALUE_SCALE_FACTOR=value_factor] pwls_spec [pwls_spec ...]

Where:
time_factor Scales all time values in definition by time_factor

value_factor Scales all magnitude values by value_factor

pwls_spec may be one of the following

a. Time step is set up by the .TRAN simulator directive which defines a transient
analysis. Refer to “.TRAN” on page 265

Name Description Default

vo Offset (V,A) Compulsory

va Amplitude (V,A) Compulsory

fc Carrier frequency (Hz) Default if omitted or zero = 1/Stop timea

a. Stop time refers to the end time of the transient analysis.

mdi Modulation index Default if omitted = 0

fs Signal frequency (Hz) Default if omitted or zero = 1/Stop time
129

Simulator Reference Manual
(time, value) Creates a single data point. time is relative to the current
context.

(+time, value) Creates a single data point. time is relative to the previous point.

REPEAT FOR n pwls_spec ENDREPEAT
Repeats pwls_spec n times.

REPEAT FOREVER pwls_spec ENDREPEAT
Repeats pwls_spec forever

SIN sine_parameters END
Creates a sinusoid. See table below for definition of
sine_parameters

PULSE pulse_parameters END
Creates a pulse train. See table below for definition of
pulse_parameters

Sine Parameters

The sine value is defined as follows:

if t>0 OR DELAY<0

PEAKSIN(f2t+PHASE/180) + OFFSET

else

PEAKSIN(PHASE/180) + OFFSET

Where:
f = FREQ + tRAMP
t = time - tref - DELAY
time is the global simulation time
tref is the reference time for this spec

Name Description Default Compulsory

FREQ Frequency N/A Yes

PEAK Peak value of sine 1.0 No

OFFSET Offset 0.0 No

DELAY Delay before sine starts. 0.0 No

PHASE Phase 0.0 No

CYCLES Number of cycles. Use -1.0 for infinity -1.0 No

MINPOINTS Minimum number of timesteps used per
cycle

13 No

RAMP Frequency ramp factor 0.0 No
130

Chapter 4 Analog Device Reference
Pulse Parameters

RISE, FALL, WIDTH and PERIOD must be greater than zero. DELAY must be
greater than or equal to zero

Mutual Inductor

Specifies coupling between two inductors.

Netlist Entry

Kxxxx l1 l2 coupling_factor

l1 Component reference of first inductor

l2 Component reference of second inductor

coupling_factor Coupling factor, K

Name Description Default Compulsory

V0 Offset 0 No

V1 Positive pulse
value

1.0 No

V2 Negative pules
value

-1.0 No

RISE Rise time i.e time
to change from V2
to V1

PERIOD/1000 No

FALL Fall time i.e time to
change from V1 to
V2

PERIOD/1000 No

WIDTH Positive pulse
width

(PERIOD-RISE-FALL)/2 No

PERIOD Period N/A Yes

DELAY Delay before start 0 No

CYCLES Number of
complete cycles. -1
means infinity

-1 No

L1
1mH

L2
1mH
131

Simulator Reference Manual
If mutual inductance is M then:

K cannot be greater than 1.

Notes

You can only couple ideal inductors using this method. The saturable inductor devices
may not be coupled in this way. See “Inductor (Saturable)” on page 85 for more
information.

To use the mutual inductor directly on a schematic you will need to add the device line
to the netlist. See “Adding Extra Netlist Lines” on page 13 for information about how
to do this.

If you wish to couple more than two inductors, the coupling coefficient (K value) must
be specified for every possible combination of two inductors. An error will result if
this is not done.

For iron cored transformers values of K between 0.99 and 0.999 are typical. For
ferrites lower values should be used. If the windings are concentric (i.e. one on top of
the other) then 0.98 to 0.99 are reasonable. If the windings are side by side on a
sectioned former, K values are lower - perhaps 0.9 to 0.95. The addition of air gaps
tends to lower K values.

Example

A transformer with 25:1 turns ratio and primary inductance of 10mH

** Inductors
Lprimary N1 N2 10m
Lsecondary N3 N4 16u

** Coupling of 0.99 typical for ungapped ferrite
K1 Lprimary Lsecondary 0.99

Verilog-HDL Interface (VSXA)

Overview

The VSXA device provides digital functionality defined by a Verilog-HDL definition.
The connections to the VSXA device map directly to input and output ports defined

v L
i

t
M

i

tL
L L

1

1 2
d

d

d

d
 1

v L
i

t
M

i

tL
L L

2

2 1
d

d

d

d
 2

K
M

L L


1 2.
132

Chapter 4 Analog Device Reference
within the Verilog-HDL module and may be connected to analog or digital SIMetrix
components or other VSXA devices.

The Verilog-HDL simulation is performed by an external Verilog simulator and at least
one such simulator is supplied with SIMetrix and is pre-installed with no additional
setup or configuration required. Communication between the external Verilog-HDL
simulator is achieved through the VPI programming interface and in principle this can
allow any VPI compliant Verilog-HDL simulator to be used for this purpose.

This section describes details of the VSXA device. For more general information about
using the Verilog-HDL feature, refer to Chapter 13 in the User’s Manual.

Netlist

Uxxxx nodes modelname

nodes Nodes connecting to Verilog device. Nodes that appear here
map directly to the port connections in the top level module in
the Verilog file defined in the associated .MODEL statement. If
the Verilog definition contains vector connections, the sizes of
those connections may be defined using the PORTSIZES model
parameter. See below for details.

modelname Name of model. Used to reference .MODEL statement

Model Syntax

MODEL modelname vsxa parameters

Name Description Units Default

LOAD Path to file name of Verilog definition. n/a Compuls
ory

IN_LOW Input analog low threshold voltage. A
logic zero will be detected when the
analog voltage drops below this threshold

V 2.2

IN_HIGH Input analog high threshold voltage. A
logic one will be detected when the
analog voltage rises above this threshold

V 2.3

OUT_LOW Output voltage for a logic zero V 0

OUT_HIGH Output voltage for a logic one V 5

T_RISE Output rise time sec 100p

T_FALL Output fall time sec 100p

IN_RES Input resistance Ohms 1e12

OUT_RES Output resistance for logic zero and logic
one states

Ohms 100
133

Simulator Reference Manual
OUT_RES_
HIZ

Output resistance for the high impedance
state

Ohms 1e12

TIME_TOL Input threshold time tolerance. This
parameter works in the same way as the
TIME_TOL parameter defined for the A-D
Interface bridge used in the built-in digital
simulator. This is described in “Time Step
Control - TIME_TOL parameter” on
page 192

sec 100p

DISABLE_
INTERNAL_
VECTORS

VSXA instances that are connected to
each other but not to any other SIMetrix
device still generate digital vectors to
allow plotting of those nodes. Setting this
parameter to 1 disables this

0 (false)

DISABLE_
MODULE_
CACHE

No cache data will be created for this
model.

0 (false)

PORTSIZES Array of values defining the size of each
port. If any of the Verilog ports are
vectors, SIMetrix needs to know their
size. If this parameter is not specified, it
will assume they are the size defined in
the Verilog module. If any is actually
smaller, this needs to be defined in this
parameter.

This is a vector value with one value for
each port. So if there are three ports,
PORTSIZES would be set like this for
example:

PORTSIZES=[2,3,5]

which would set the first port to size 2, the
second to size 3 and the last to size 5

see
descripti
on

Name Description Units Default
134

Chapter 4 Analog Device Reference
As well as the above parameters, you can also define values for parameters declared in
the associated Verilog file. These carry the same name as the Verilog parameter.

Analog Input Interface

Any port in the Verilog definition that is defined as an input will be treated by the
analog simulator as a VSXA input connection. This has the following characteristics:

1. Input resistance equal to the value of the in_res model parameter.

2. Detects a logic one when the input signal rises above a voltage equal to the
in_high model parameter.

3. Detects a logic low when the input signal drops below a voltage equal to the
in_low model parameter.

4. When the input voltage is between the in_low and in_high values, the signal
detected will be the most recent value detected, that is it will hold its value like a
schmitt trigger. For DC and t=0 the value will be that defined by the PORTINIT
parameter. This is logic zero by default. A PORTINIT value of 1 will set this to
logic one and any other value will set it to an unknown state.

5. The analog system will only send an UNKNOWN state to a Verilog input if the
DC voltage lies between the thresholds and the corresponding PORTINIT value
is other than 0 or 1. Once an input has acquired a logic zero or logic one state, it
will thereafter behave as a schmitt trigger.

Important VSXA inputs that are only connected to other VSXA inputs and no more
than one VSXA output are implemented entirely within the Verilog domain and are not
connected to the analog simulator. The digital data for such connections is nevertheless
made available. See “Data Vector Output” on page 136 for further details.

PORTINIT Initial state for input ports if dc solution
lies between in_low and in_high. This is a
vector value with one value for each input
port. So if there are two input ports,
PORTINIT would be set like this for
example:

PORTINIT=[1,1]

which would set both ports to a logic one
indicating if the analog input lies between
the defined thresholds. If a PORTINIT
value is set to 2, the port will be set to the
UNKNOWN state.

Note that vector ports are treated as one
for this parameter.

0

Name Description Units Default
135

Simulator Reference Manual
Analog Output Interface

Any port in the Verilog definition that is defined as an output will be treated by the
analog simulator as a VSXA output connection. This is modelled as shown in the
following diagram:

Each switch has an on state resistance of OUT_RES and an off state resistance of
OUT_RES_HIZ. In the logic one state, S1 is on, in the logic zero state S2 on, while in
the high-impedance state, neither switch is on. When transitioning from one state to
another state, each switch’s resistance changes linearly to the new state’s value in the
time determined by the parameters T_RISE and T_FALL.

Important A VSXA output that is only connected to VSXA inputs is implemented
entirely within the Verilog domain and are not connected to the analog simulator.

Data Vector Output

Voltage Data

Connections between VSXA devices and any other SIMetrix device (including non-
Verilog digital devices) are analog nodes in every way and will generate voltage data
vectors in the usual way.

Connections between VSXA devices and other VSXA devices that do not connect to
anything else and do not connect more than one Verilog module output port are
implemented entirely within the Verilog simulator domain and do not interface to the
analog simulator. For such connections, digital data vectors are created. These
transition between the values OUT_LOW and OUT_HIGH with rise and fall times
equal to the timing resolution set by the VerilogResolution option setting. This defaults
to 1fs.

RON=OUT_RES
ROFF=OUT_RES_HIZ

OUT

OUT_LOW

OUT_HIGH

S1

S2

RON=OUT_RES
ROFF=OUT_RES_HIZ
136

Chapter 4 Analog Device Reference
In some situations it is possible that the overhead of creating this data could slow down
the simulation. This would be the case where such internally connected signals carry
high speed data that is much faster than the analog time steps. In these cases the output
of this data can be disabled using the DISABLE_INTERNAL_VECTORS parameter
for the VSXA device that carries the output driving port. They can also be globally
disabled using the VerilogDisableInternalVectors .OPTION setting. (See
“VERILOGDISABLEINTERNALVECTORS” on page 251)

Current Data

VSXA devices generate current vectors in the normal way for all connections that
connect to analog signals. These vectors are named as follows:

ref#port_name

In the case of vector ports port_name is the name of the port appended with the index
of the wire within the port. For example, with the following Verilog definition:

module adder(in1, in2, out) ;

 input [3:0] in1 ;
 input [3:0] in2 ;
 output [3:0] out ;

the port_names for the out port would be out0, out1, out2 and out3.

Module Cache

Operation

Before starting a simulation and also when creating a symbol from a Verilog design,
SIMetrix needs to gather some information about each Verilog module used in the
circuit. It does this by starting a Verilog simulation then interrogating the Verilog
simulator via VPI. This process can take some time if there are many Verilog modules
in the circuit. To speed things up, SIMetrix caches the information obtained for future
use.

The cache mechanism calculates the MD5 checksum of the Verilog file and stores this
with the cached information in the cache file. When the cached information is required,
SIMetrix calculates the MD5 checksum of the Verilog file and looks to see whether
there is a cache item with that MD5 value. If there is, it will use the cached data. If not
it will retrieve the information via the Verilog simulator.

Location

The cache file is located at vldatapath/module-cache.sxche

Where vldatapath is a directory defined by the VlDataPath global option setting. (See
User’s Manual for details about global options). Its default value is:

simetrix_app_data_dir/veriloghdl

See User’s Manual for details about the Application Data path simetrix_app_data_dir.
137

Simulator Reference Manual
Be aware that this file is created when a simulation is closed. This takes place when a
new simulation is started, when the Reset script command is executed or when the
simulator process terminates.

Limitations

The cache mechanism only looks at the contents of the Verilog file referenced. It does
not take account of include files for example. However, the only information stored in
the cache are the module name, names and direction of the module ports and the
names, types and default values of any parameters. It would be ususual to store these
items in an include file but of course this is perfectly legal.

If the top level ports or/and parameters for your Verilog design are nor defined in the
main file but in an include file, then you should either redesign the Verilog file or
alternatively disable the cache for that module.

The cache can be disabled by setting the DISABLE_MODULE_CACHE model
parameter. Important: the DISABLE_MODULE_CACHE parameter disables the
creation of cached information; it does not disable using cached information if it
already exists. This is because the cache is read before model parameters are read. You
may wish to clear the cache altogether when setting this parameter. This can be done
from the front end with menu Verilog | Clear Verilog-HDL Module Info Cache.

The cache can also be globally disabled using the .OPTIONS setting
VerilogDisableModuleCache.

NXP Compact Models

Introduction

SIMetrix supports a range of device models developed by NXP Semiconductor.

This supersedes the old Philips compact models (PCM) interface, however, the older
devices are still available if needed. Versions of devices that are available through both
interfaces (e.g MOS 9.03) will now default to the SIMKIT interface but the old version
is still available by selecting a different level number. PCM devices do not support
multi-core execution and so usually the Simkit versions will run faster.

The table below shows the models available. Model statements should be in the form:

.model model_name model_type_name LEVEL=level_number
parameters

E.g.

.model my_model nmos LEVEL=103 ...

defines a MOS 9 nmos device.

To instantiate the device line must start with the letter as defined in the Device Letter
column in the table below. The number of nodes must be within the range specified in
the table.
138

Chapter 4 Analog Device Reference
SIMKIT Devices

The following table shows all available SIMKIT NXP models

Device
Name

Model
Type
Name

Device
Letter

Max num
Terms.

Min num
Terms.

Level Description

mos903e_n nmos M 4 4 103 MOS 9 Electrical N
chan

mos903e_p pmos M 4 4 103 MOS 9 Electrical P
chan

mos903_n nmos M 4 4 203 MOS 9 Geom. N
chan

mos903_p pmos M 4 4 203 MOS 9 Geom. P
chan

mos903t_n nmos M 5 4 223 MOS 9 Thermal N
chan

mos903t_p pmos M 5 4 223 MOS 9 Thermal P
chan

bjt504_n npn Q 4 3 104 Mextram 4 term NPN

bjt504_p pnp Q 4 3 104 Mextram 4 term PNP

bjt504t_n npn Q 5 3 124 Mextram Thermal
NPN

bjt504t_p pnp Q 5 3 124 Mextram Thermal
PNP

bjt3500_n npn Q 4 3 304 BJT 3500 NPN

bjt3500_p pnp Q 4 3 304 BJT 3500 PNP

bjt3500t_n npn Q 5 3 324 BJT 3500 Thermal
NPN

bjt3500t_p pnp Q 5 3 324 BJT 3500 Thermal
PNP

bjt500_p pnp Q 4 3 200 BJT Level 500
Lateral PNP

bjt500t_p pnp Q 5 3 220 BJT Level 500
Lateral PNP, thermal

psp1020_n nmos M 4 4 902 PSP 1.02 nmos

psp1020_p pmos M 4 4 902 PSP 1.02 pmos

psp1021_n nmos M 4 4 912 PSP 1.02 nmos
binned version

psp1021_p pmos M 4 4 912 PSP 1.02 pmos
binned version

psp102e_n nmos M 4 4 802 PSP 1.02 nmos
electrical

psp102e_p pmos M 4 4 802 PSP 1.02 pmos
electrical
139

Simulator Reference Manual
pspnqs1020_
n

nmos M 4 4 942 PSP 1.02 nmos,
non-quasi static

pspnqs1020_
p

pmos M 4 4 942 PSP 1.02 pmos,
non-quasi static

pspnqs1021_
n

nmos M 4 4 952 PSP 1.02 nmos,
non-quasi static,
binned

pspnqs1021_
p

pmos M 4 4 952 PSP 1.02 pmos,
non-quasi static,
binned

pspnqs102e_
n

nmos M 4 4 842 PSP 1.02 nmos,
non-quasi static,
electrical

pspnqs102e_
p

pmos M 4 4 842 PSP 1.02 pmos,
non-quasi static,
electrical

psp103_n nmos M 4 4 903 PSP 1.03 nmos

psp103_p pmos M 4 4 903 PSP 1.03 pmos

pspnqs103_n nmos M 4 4 943 PSP 1.03 nmos,
non-quasi-static

pspnqs103_p pmos M 4 4 943 PSP 1.03 pmos,
non-quasi-static

mos1102e_n nmos M 4 4 502 MOS 11, 1102 nmos,
electrical

mos1102e_p pmos M 4 4 502 MOS 11, 1102 pmos,
electrical

mos1102et_n nmos M 5 4 522 MOS 11, 1102 nmos,
electrical, thermal

mos1102et_p pmos M 5 4 522 MOS 11, 1102 pmos,
electrical, thermal

mos11020_n nmos M 4 4 602 MOS 11, 1102 nmos,
geometric

mos11020_p pmos M 4 4 602 MOS 11, 1102 pmos,
geometric

mos11020t_n nmos M 5 4 622 MOS 11, 1102 nmos,
geometric, thermal

mos11020t_p pmos M 5 4 622 MOS 11, 1102 pmos,
geometric, thermal

mos11021_n nmos M 4 4 612 MOS 11, 1102 nmos,
geometric, binned

mos11021_p pmos M 4 4 612 MOS 11, 1102 pmos,
geometric, binned

mos11021t_n nmos M 5 4 632 MOS 11, 1102 nmos,
geometric, binned,
thermal
140

Chapter 4 Analog Device Reference
mos11021t_p pmos M 5 4 632 MOS 11, 1102 pmos,
geometric, binned,
thermal

mos1101e_n nmos M 4 4 501 MOS 11, 1101 nmos,
electrical

mos1101e_p pmos M 4 4 501 MOS 11, 1101 pmos,
electrical

mos1101et_n nmos M 5 4 521 MOS 11, 1101 nmos,
electrical, thermal

mos1101et_p pmos M 5 4 521 MOS 11, 1101 pmos,
electrical, thermal

mos11010_n nmos M 4 4 601 MOS 11, 1101 nmos,
geometric

mos11010_p pmos M 4 4 601 MOS 11, 1101 pmos,
geometric

mos11010t_n nmos M 5 4 621 MOS 11, 1101 nmos,
geometric, thermal

mos11010t_p pmos M 5 4 621 MOS 11, 1101 pmos,
geometric, thermal

mos11011_n nmos M 4 4 611 MOS 11, 1101 nmos,
geometric, binned

mos11011_p pmos M 4 4 611 MOS 11, 1101 pmos,
geometric, binned

mos11011t_n nmos M 5 4 631 MOS 11, 1101 nmos,
geometric, binned,
thermal

mos11011t_p pmos M 5 4 631 MOS 11, 1101 pmos,
geometric, binned,
thermal

juncap d D 2 2 101 JUNCAP

juncap200 d D 2 2 102 JUNCAP 200

mos2002_n nmos M 4 4 1302 MOS Model 20 level
2002, nmos

mos2002_p pmos M 4 4 1302 MOS model 20 level
2002, pmos

mos2002e_n nmos M 4 4 1202 MOS Model 20 level
2002, nmos,
electrical

mos2002e_p pmos M 4 4 1202 MOS Model 20 level
2002, pmos,
electrical

mos2002t_n nmos M 5 4 1322 MOS Model 20 level
2002, nmos, thermal

mos2002t_p pmos M 5 4 1322 MOS Model 20 level
2002, pmos, thermal
141

Simulator Reference Manual
Notes on SIMKIT Models

Binned Models

Binned models are not yet integrated with the library binning system. So, to use the
binning features of binned models, you will need to manually generate separate model
names for each bin.

Real Time Noise

Some models do not fully implement real-time noise. Many MOS models include
frequency dependent gate noise and this is not included in real-time noise analyses.
Also some models include correlated noise which is also not included. In most cases
these effects are small anyway and have little effect.

You can set this option in AC small-signal noise:

.options noMos9GateNoise

to disable the same effects in AC small signal noise. A comparison can then be made to
estimate the effect these noise sources may have in real-time noise. Although the
option name suggests that it only applies to MOS9, this does in fact work with all
applicable models.

In the case of PSP 102 models, you can instead invoke the Verilog-A based model
which fully supports all noise effects in real-time noise analysis. See next section for
details.

mos2002et_n nmos M 5 4 1222 MOS Model 20 level
2002, nmos,
electrical, thermal

mos2002et_p pmos M 5 4 1222 MOS Model 20 level
2002, pmos,
electrical, thermal

mos3100_n nmos M 4 4 700 MOS Model Level
3100, nmos

mos3100_p pmos M 4 4 700 MOS Model Level
3100, pmos

mos3100t_n nmos M 5 4 720 MOS Model Level
3100, nmos, thermal

mos3100t_p pmos M 5 4 720 MOS Model Level
3100, pmos, thermal

mos40_n nmos M 4 4 400 MOS model Level
40, nmos

mos40_p pmos M 4 4 400 MOS model Level
40, pmos

mos40t_n nmos M 5 4 420 MOS model Level
40, nmos, thermal

mos40t_p pmos M 5 4 420 MOS model Level
40, pmos, thermal
142

Chapter 4 Analog Device Reference
PSP 102

The PSP 102 nmos and pmos geometric models (level 902) are also available as level
1023. However the two models are implemented differently. Level 902 is implemented
through the SIMKIT interface. The model code itself in this case is created using
ADMS from the Verilog-A description. However, it seems that the noise model for this
is not created from the Verilog-A code and appears to have been hand coded.

The Level 1023 version is built entirely from the Verilog-A code using the SIMetrix
Verilog-A compiler but using a more advanced commercial C-compiler than the open
source version supplied with SIMetrix. This version has the benefit over the Simkit
version that it fully supports real-time noise including correlated effects and gate noise.
It is however a little slower - typically about 5-10% compared to the SIMKIT version.

We have done extensive side by side tests of both models and both give identical
results to a high degree of accuracy.

PCM Devices

The following table shows the older PCM (Philips Compact Model) devices still
supported by the level numbers used for SIMetrix versions 6.2 and earlier. These are
provided only for backward compatibility. Note that the PCM interface does not
support multi-core simulation and so will run slower than the SIMKIT devices.

Description NXP
name

SPICE
model
type

SPICE
Level

Device
letter

Number
of terms

MOS 9 Electrical,
version 9.02

MNE_902
MPE_902

nmos,
pmos

102 M 4

MOS 9 Electrical,
version 9.03

MNE_903
MPE_903

nmos,
pmos

103 M 4

MOS 9 Geometric,
version 9.02

MN_902
MP_902

nmos,
pmos

202 M 4

MOS 9 Geometric,
version 9.03

MN_903
MP_903

nmos,
pmos

203 M 4

MOS 11 Electrical MNE_1100
MPE_1100

nmos,
pmos

500 M 4

MOS 11 Geometric MN_1100
MP_1100

nmos,
pmos

600 M 4

Mextram 4 term 5.03 TNS_503,
TPS_503

npn, pnp 103 Q 4
143

Simulator Reference Manual
Notes on PCM Models

MOS9/11 and Real Time Noise

The gate thermal noise of the MOS9/11 device is not implemented for real-time noise
analysis. In practice the effect of this noise component is usually small and only occurs
at high frequencies. To investigate the contribution of this component to overall circuit
behaviour, it can be disabled in AC noise analysis by setting the option
NoMos9GateNoise.

Documentation

Original NXP documentation on these models can be found in a number of PDF files
on the installation CDROM and at our web site. Please visit “Further Documentation”
on page 53 for details.
144

Chapter 5 Digital/Mixed Signal Device Reference
Chapter 5 Digital/Mixed Signal Device Reference

Digital Device Overview

Common Parameters

A number of model parameters are common to most of the digital models. These are
described below.

Family Parameters

These identify the logic family to which the input and outputs belong. Logic families
are explained in detail on page 303. Most models have three family parameters:

Output Parameters

Family name Description

in_family Specifies family for inputs. If omitted, the input family is
specified by the FAMILY parameter

out_family Specifies family for outputs. If omitted, the output family is
specified by the FAMILY parameter

family Default value for IN_FAMILY and OUT_FAMILY

Parameter
name

Description

out_res This is used to calculate loading delay. It has dimensions of
Ohms so is referred to as a resistance. The additional
loading delay is calculated by multiplying OUT_RES by the
total capacitative load detected on the node to which the
output connects.

min_sink Used to calculate static loading effects. This is the current
that the device is able to sink. Current flowing out of the pin
is positive so this parameter is usually negative. If the total
sink load current is arithmetically smaller (i.e. more
negative) than this parameter then the output will be forced
to an UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.

max_source Used to calculate static loading effects. This is the current
that the device is able to source. Current flowing out of the
pin is positive. If the total source load current is larger than
this parameter then the output will be forced to an
UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.
145

Simulator Reference Manual
Input Parameters

Delays

Most digital devices have at least one model parameter that specifies a time delay.
Unless otherwise noted, all delays are inertial. This means that glitches shorter than the
delay time will be swallowed and not passed on. For example, the following
waveforms show the input and output of a gate that has a propagation delay of 10nS.
The first pulse is only 5nS so does not appear at the output. The second pulse is 20nS
so therefore is present at the output delayed by 10nS.

The Buffer device has an optional stored delay (also known as transport delay)
parameter that makes possible the specification of pure delays.

And Gate

Netlist entry:

Axxxx [in_0 in_1 .. in_n] out model_name

Parameter
name

Description

sink_current Current that the input sinks. Positive current flows into the
device so this parameter is usually negative. The total of all
the input sink currents are added together when a node is in
the logic '0' state. If the total sink load current is
arithmetically smaller (i.e. more negative) than the
MIN_SINK parameter of the device driving the node, then it
will be forced to an UNKNOWN state. This is used to
implement fan out limitations in bipolar logic.

source_current Current that the input sources. Positive current flows into the
device. The total of all the input source currents are added
together when a node is in the logic '1' state. If the total
source load current is larger than the MAX_SOURCE
parameter of the device driving the node, then it will be
forced to an UNKNOWN state. This is used to implement
fan out limitations in bipolar logic.

Time/nSecs 20nSecs/div

0 20 40 60 80

Output

Input
146

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Model format

.MODEL model_name d_and parameters

Model parameters

Device operation

• If the model parameter OPEN_C is false, The output will be at logic '0' if either
input is at logic '0'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '1'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '0' the output strength will be
STRONG. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be HI-IMPEDANCE
allowing a pull-up resistor to force it to the logic '1' state.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
147

Simulator Reference Manual
D-type Latch

Netlist entry

Axxxx data enable set reset out nout model_name

Connection details

Model format

.MODEL model_name d_dlatch parameters

Model parameters

Name Description Flow Type

data Input data in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

data_delay Delay from data real 1nS 1e-12 - 

enable_delay Delay from enable real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state
0: logic '0'
1: logic '1
2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

EN
QN

QD

RST

SET
148

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The device is a level triggered latch with a single data input, complimentary outputs
and active high asynchronous set and reset. The operation of the device is illustrated in
the following diagram:

The asynchronous inputs (set and reset) override the action of the enable and data
lines.

data_load Data load value (F) real 1pF none

enable_load Enable load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

Time/µSecs 1µSecs/div

0 1 2 3 4 5

OUTPUT

ENABLE

DATA

data_delay+fall_delay

enable_delay+fall_delay

data_delay+rise_delay
149

Simulator Reference Manual
D-type Flip Flop

Netlist entry

Axxxx data clk set reset out nout model_name

Connection details

Model format

.MODEL model_name d_dff parameters

Model parameters

Name Description Flow Type

data Input data in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state
0: logic '0'
1: logic '1
2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

data_load Data load value (F) real 1pF none

QN

QD

RST

SET
150

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The device is an edge triggered D-type flip flop with active high asynchronous set and
reset. The operation of the device is illustrated by the following diagram

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

Time/µSecs 1µSecs/div

0 1 2 3 4 5

RESET

Q

D

CLOCK

clk_delay+rise_delay

clk_delay+fall_delay

reset_delay+fall_delay
151

Simulator Reference Manual
Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_buffer parameters

Model parameters

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

stored_delay Stored delay (overrides
rise_delay and fall_delay)

real 0 0 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

open_e Open emitter output boolean FALSE none
152

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This device is a simple buffer with a single input and output. It can optionally be
specified to have an open collector (open_c parameter) or open emitter (open_e
parameter) output. Further, if the stored_delay parameter is specified, the device will
act as a pure delay. This means that it will pass pulses that are shorter than the delay
time whereas normally (delay specified by rise_delay and fall_delay) such pulse would
be swallowed. (stored_delay is also known as transport delay)

The following table describes the device operation in detail

Note the difference between open emitter and open collector operation. These modes
have been designed to be as close to as possible to real devices, in particular their
behaviour into an open circuit. An open emitter output, when switching from high to
low is likely to follow the voltage on the device's base due to the base-emitter
capacitance so the output state follows the input state. An open collector (or open
drain) output on the other hand will remain in the low state when its input switches.

Frequency Divider

Netlist entry

Axxxx freq_in freq_out model_name

OPEN_C
parameter

OPEN_E
parameter

Input Output
state

Output strength

FALSE FALSE 0 0 STRONG

FALSE FALSE 1 1 STRONG

FALSE FALSE UNKNOWN UNKNOWN STRONG

FALSE TRUE 0 0 HI-IMPEDANCE

FALSE TRUE 1 1 STRONG

FALSE TRUE UNKNOWN UNKNOWN UNDETERMINED

TRUE FALSE 0 0 STRONG

TRUE FALSE 1 0 HI-IMPEDANCE

TRUE FALSE UNKNOWN 0 UNDETERMINED

TRUE TRUE 0 1 HI-IMPEDANCE

TRUE TRUE 1 0 HI-IMPEDANCE

TRUE TRUE UNKNOWN UNKNOWN UNDETERMINED

Freq. Div
153

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_fdiv parameters

Model parameters

Device Operation

This device is a positive edge triggered frequency divider. Three model parameters
allow arbitrary definition of the divide ratio, output duty cycle, output phase and initial
delay. Operation of the frequency divider is illustrated by the following diagram which
shows the output of a frequency divider with a DIV_FACTOR of 10 and two
alternative values of HIGH_CYCLES.

Name Description Flow Type

freq_in Frequency input in d

freq_out Frequency output out d

Name Description Type Default Limits

div_factor Divide factor integer 2 1 - 

high_cycles Number of high clock cycles integer 1 1 - 

i_count Output initial count value integer 0 0 - 

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

freq_in_load Freq_in load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
154

Chapter 5 Digital/Mixed Signal Device Reference
The above was carried out with I_COUNT=0. I_COUNT is the initial value of the
internal counter. The output first goes high when it attains a value of 1 or
1+DIVIDE_RATIO so when I_COUNT is zero (the default) the output first goes high
after the first rising edge. If I_COUNT is set to 5 the output first goes high after the 6th
rising edge and if I_COUNT is -20, the 21st rising edge.

Digital Initial Condition

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_init parameters

Model parameters

Name Description Flow Type

out Output out d

Name Description Type Default Limits

ic Initial state integer 0 none

is Initial strength
1 = STRONG
0 = RESISTIVE

integer 1 none

out_family Output logic family string UNIV none

Time/µSecs 10µSecs/div

0 10 20 30 40 50

high_cycles=4

high_cycles=1

Clock
155

Simulator Reference Manual
Device Operation

This device has the defined initial state (IC parameter) and initial strength (IS
parameter) during the DC operating point solution, then reverts to HI-IMPEDANCE
for the remainder of the analysis.

Digital Pulse

Netlist entry

Axxxx out model_name : parameters

Connection details

Instance parameters

Model format

.MODEL model_name d_pulse parameters

Model parameters

Name Description Flow Type

out Output out d

Name Description Type

period Pulse period real

delay Delay real

duty Duty cycle real

width Pulse width real

open_out Open emitter output boolean

Name Description Type Default Limits

duty Duty cycle real 0.5 1e-06 -
0.999999

delay Initial delay real 0 0 - 

period Period
If zero, a single pulse will be
output

real 1S 1e-12 - 

width Pulse width (overrides duty if
specified)

real period *
duty

0 - 
156

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This device supplies a repetitive or single pulse of defined period, delay and width.
Optionally, the device may be specified to have an open emitter output allowing
several pulse sources to be wire OR'ed to create complex pulses. All 5 main .MODEL
parameters may also be specified on the device line as instance parameters in which
case they override any values specified in the .MODEL statement.

If OPEN_OUT is specified and true, a pull down resistor must be connected to the
output.

Digital Signal Source

Netlist entry

Axxxx [out_0 out_1 .. out_n] model_name

Connection details

Model format

.MODEL model_name d_source parameters

open_out Open emitter output boolean FALSE none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

Name Description Flow Type

out Output out d, vector

Name Description Type Default Limits
157

Simulator Reference Manual
Model parameters

Device Operation

The digital signal source provides a multi bit arbitrary digital signal defined in a file.

File Format

The file is in ASCII format and is in the form of a table each row being on a new line.
The first column defines the time values while the entries in the remaining columns
define the output value for each of the outputs. So the total number of columns must be
the number of outputs plus one. The output values must appear in the same order as the
outputs in the netlist entry. So, the values for out_0 will be in column 2, out_1 in
column 3 etc.

The file may include blank lines and comment lines beginning with a '*'.

The output values must specify the state as well as the strength using the following
codes:

Name Description Type Default Limits

input_file Digital input vector filename string none none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

Code State-Strength

0S LOW-STRONG

1S HIGH-STRONG

US UNKNOWN-STRONG

0R LOW-RESISTIVE

1R HIGH-RESISTIVE

UR UNKNOWN-RESISTIVE

0Z LOW-HI-Z

1Z HIGH-HI-Z
158

Chapter 5 Digital/Mixed Signal Device Reference
Note, these codes are not case sensitive.

Example

The following file:

* This is an example source file
0.0 0s 0s 0r 1s
1u 0s 0s 0r 0z
2u 0s 0s 1r 0z
5u 1s 0s 1r 0z
22e-6 1s 1s 1r 0z
50u 0s 1s 1r 0z
60u 0s 1s 1r 0z
70u 0s 1s 1r 0z
80u 0s 1s 1r 0z
90u Us Us Ur 0s

and this circuit:

Produces the following waveforms

UZ UNKNOWN-HI-Z

0U LOW-UNDETERMINED

1U HIGH-UNDETERMINED

UU UNKNOWN-UNDETERMINED

Code State-Strength

1n
C1

OUT_2

OUT_0U2
SOURCEOUT_1

OUT_3 4.7k

R1
V1
2.5
159

Simulator Reference Manual
An error will result if the file fails in any way to comply with the format. There must
be the exact number of entries in each row and the time values must be monotonic.
Totally blank lines or lines containing only white space are permitted but any other
non-comment line not complying with the format will fail.

Inverter

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_inverter parameters

Name Description Flow Type

in Input in d

out Output out d

Time/µSecs 20µSecs/div

0 20 40 60 80

OUT_3

OUT_2

OUT_1

OUT_0
160

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

If the OPEN_C parameter is not specified or is FALSE, this device simply inverts the
state of its input. I.e. if the input is logic '0' the output will be logic '1' and vice-versa. If
the input is UNKNOWN the output will also be UNKNOWN.

If OPEN_C is TRUE, the output state is always at logic '0' and the input determines its
strength. If the input is at logic '1' the output strength is STRONG and if it is at logic '0'
the output strength is HI-IMPEDANCE. The output strength will be
UNDETERMINED if the input is UNKNOWN.

JK Flip Flop

Netlist entry

Axxxx j k clk set reset out nout model_name

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string HC none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
161

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_jkff parameters

Model parameters

Name Description Flow Type

j J input in d

k K input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

jk_load J,k load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 
162

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The following circuit and graph illustrate the operation of this device:

The following table describes the operation of the device when both inputs are at
known states: The output can only change on a positive edge of the clock.

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

U1-CLK

U1-J

U1-QN

U1
JK_FlipFlop

QN

QJ

RST

SET

K

U2

U3
Counter_4

D3

D2

D1

D0

U1-Q

U1-K

Time/µSecs 2µSecs/div

0 2 4 6 8 10 12 14 16 18 20

U1-QN

U1-Q

U1-K

U1-J

U1-CLK

clk_delay+fall_delay

clk_delay+rise_delay
163

Simulator Reference Manual
When either input is UNKNOWN, the situation is more complicated. There are some
circumstances when a known state can be clocked to the output even if one of the
inputs is unknown. The following table describes the operation for all possible input
states. X means UNKNOWN.

J input K input Output

0 0 No change

0 1 0

1 0 1

1 1 toggle

J input K input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

1 0 1 1

1 0 X 1

1 1 0 1

1 1 1 0

1 1 X X

1 X 0 1

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X
164

Chapter 5 Digital/Mixed Signal Device Reference
Arbitrary Logic Block

Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n]
+ model_name : parameters

Connection details

Instance Parameters

Model format

.MODEL model_name d_logic_block parameters

X 1 0 X

X 1 1` 0

X 1 X X

X X 0 X

X X 1 X

X X X X

Name Description Flow Type

in Input in d, vector

out Output out d, vector

Name Description Type

trace_file Trace file string

user User device params real
vector

J input K input old output new output
165

Simulator Reference Manual
Model parameters

Device Operation

See “Arbitrary Logic Block - User Defined Models” on page 308.

Name Description Type Default Limits Vector
bounds

file Definition file name string none none n/a

def Definition string none none n/a

out_delay Default output delay real 1n 1p -  n/a

reg_delay Default internal
register delay

real 1n 0 -  n/a

setup_time Default level
triggered setup time

real 0 0 -  n/a

hold_time Default edge
triggered hold time

real 0 0 -  n/a

min_clock Default minimum
clock width

real 0 0 -  n/a

trace_file Trace log file string none n/a

user User defined
parameters

real
vector

none none none

user_scale Scale of user values real 1 0 -  n/a

input_load Input load value (F) real 1p none n/a

family Logic family string UNIV none n/a

in_family Input logic family string UNIV none n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 -  n/a

out_res_pos Digital output res.
pos. slope

real out_res 0 -  n/a

out_res_neg Digital output res.
neg. slope

out_res 0 -  n/a

sink_current Input sink current real 0 none n/a

source_current Input source current real 0 none n/a
166

Chapter 5 Digital/Mixed Signal Device Reference
Nand Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_nand parameters

Model parameters

Device operation

• If the model parameter OPEN_C is false, The output will be at logic '1' if either
input is at logic '0'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '0'.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope out_res 0 - 

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
167

Simulator Reference Manual
• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '0' the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic '1' state.
Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Nor Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_nor parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

open_c Open collector output boolean FALSE none
168

Chapter 5 Digital/Mixed Signal Device Reference
Device operation

• If the model parameter OPEN_C is false, The output will be at logic '0' if either
input is at logic '1'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '1'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '1' the output strength will be
STRONG. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be HI-IMPEDANCE
allowing a pull-up resistor to force it to the logic '1' state.

Open-Collector Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_open_c parameters

Model parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

open_delay Open delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

Name Description Type Default Limits
169

Simulator Reference Manual
Device Operation

This device is included for compatibility with other XSPICE products. It is
recommended that you use the digital buffer device (see page 152) for new designs as
this supports the additional common parameters such as static input loads and families.

The logic description for the open-collector buffer is described by the following table

Open-Emitter Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_open_e parameters

Model parameters

Device Operation

This device is included for compatibility with other XSPICE products. It is
recommended that you use the digital buffer device (see page 152) for new designs as
this supports the additional common parameters such as static input loads and families.

Input Output state Output strength

0 0 STRONG

1 1 HI-IMPEDANCE

UNKNOWN UNKNOWN UNDETERMINED

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

open_delay Open delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none
170

Chapter 5 Digital/Mixed Signal Device Reference
The logic description for the open-collector buffer is described by the following table

Or Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_or parameters

Model parameters

Input Output state Output strength

0 0 HI-IMPEDANCE

1 1 STRONG

UNKNOWN UNKNOWN UNDETERMINED

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

open_c Open collector output boolean FALSE none
171

Simulator Reference Manual
Device operation

• If the model parameter OPEN_C is false, The output will be at logic '1' if either
input is at logic '1'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '0'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '1' the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic '1' state.
Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Pulldown Resistor

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_pulldown parameters

Model parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type

out Output out d

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none

Name Description Type Default Limits
172

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG
logic '0'. When resistive it can be used for wire-OR connected open emitter outputs. If
STRONG is specified (by the STRONG parameter) its main application is as a digital
ground connection.

Pullup Resistor

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_pullup parameters

Model parameters

Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG
logic '1'. When resistive it can be used for wire-AND connected open collector outputs.
If STRONG is specified (by the STRONG parameter) its main application is as a
digital VCC connection.

Random Access Memory

Netlist entry

Axxxx [data_in_0 data_in_1 .. data_in_n] [data_out_0 data_out_1 ..
+ data_out_n] [address_0 address_1 .. address_n] write_en
+ [select_0 select_1 .. select_n] model_name

Name Description Flow Type

out Output out d

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none
173

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_ram parameters

Model parameters

Device Operation

This device is provided for compatibility with other XSPICE products and is not
recommended for new designs. In some circumstances, this device can consume large
quantities of system (i.e. your PC's) RAM as it uses an inefficient method of storing
state history. RAM's can also be implemented using the arbitrary logic block (see
page 308) which is much more efficient. An example of a simple 256X8 RAM can be
found amongst the supplied example circuits (Examples/ALB_Examples/RAM.sxsch
and RAM.ldf).

Set-Reset Flip-Flop

Netlist entry

Axxxx s r clk set reset out nout model_name

Name Description Flow Type Vector
bounds

data_in Data input line(s) in d, vector 1 - 

data_out Data output line(s) out d, vector 1 - 

address Address input line(s) in d, vector 1 - 

write_en Write enable in d n/a

select Chip select line(s) in d, vector 1 - 16

Name Description Type Default Limits

select_value Decimal active value for
select line comparison

integer 1 0 - 32767

ic Initial bit state @ DC integer 2 0 - 2

read_delay Read delay from address/
select/write_en active

real 1.00E-
07

1e-12 - 

data_load Data_in load value (F) real 1pF none

address_load Address line load value (F) real 1pF none

select_load Select load value (F) real 1pF none

enable_load Enable line load value (F) real 1pF none
174

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Model format

.MODEL model_name d_srff parameters

Model parameters

Name Description Flow Type

s S input in d

r R input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

sr_load S,r load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

open_c Open collector output boolean FALSE none
175

Simulator Reference Manual
Device Operation

The SR flip flop is similar to a JK flip flop except that the output is UNKNOWN when
both S and R inputs are high. In a JK the output toggles in the same circumstances.

The following table describes the operation of the device when both inputs are at
known states: The output can only change on a positive edge on the clock.

When either input is UNKNOWN, the situation is more complicated. There are some
circumstances when a known state can be clocked to the output even if one of the
inputs is unknown. The following table describes the operation for possible input
states. X means UNKNOWN.

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

S input R input Output

0 0 No change

0 1 0

1 0 1

1 1 UNKNOWN

S input R input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

Name Description Type Default Limits
176

Chapter 5 Digital/Mixed Signal Device Reference
SR Latch

Netlist entry

Axxxx s r enable set reset out nout model_name

Connection details

1 0 1 1

1 0 X 1

1 1 0 X

1 1 1 X

1 1 X X

1 X 0 X

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X

X 1 0 X

X 1 1` X

X 1 X X

X X 0 X

X X 1 X

X X X X

Name Description Flow Type

s S input in d

r R input in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

S input R input old output new output
177

Simulator Reference Manual
Model format

.MODEL model_name d_srlatch parameters

Model parameters

Device Operation

This device is identical to the SR flip flop except that it is level not edge triggered.
That is the output may change whenever the enable input is high.

Name Description Type Default Limits

sr_delay Delay from s or r input
change

real 1nS 1e-12 -


enable_delay Delay from clk real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

sr_load S & r load values (F) real 1pF none

enable_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
178

Chapter 5 Digital/Mixed Signal Device Reference
State Machine

Netlist entry

Axxxx [in_0 in_1 .. in_n] clk reset [out_0 out_1 .. out_n] model_name

Connection details

Model format

.MODEL model_name d_state parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector none

clk Clock in d n/a

reset Reset in d n/a

out Output out d, vector 1 - no
upper
bound

Name Description Type Default Limits

clk_delay Delay from CLK real 1nS none

reset_delay Delay from reset real 1nS none

state_file State transition specification
file name

string none none

reset_state Default state on RESET & at
DC

integer 0 none

input_load Input loading capacitance (F) real 1pF none

clk_load Clock loading capacitance
(F)

real 1pF none

reset_load Reset loading capacitance
(F)

real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none
179

Simulator Reference Manual
File Syntax

The following is a formal description of the state machine file syntax using Backus-
Naur form (BNF). ‘{‘ and ‘}’ mean “zero or more” of the enclosed items.

state_machine_def :: state_def { state_def }

state_def :: header_line { continuation_line }

header_line :: STATENUM outputs inputs SEPARATOR STATE_DEST

continuation_line :: inputs SEPARATOR STATE_DEST

outputs :: OUTPUT_VALUE { OUTPUT_VALUE }
inputs :: INPUT_VALUE { INPUT_VALUE }

STATENUM :: 0 based integer indicating state number.

SEPARATOR :: Any sequence of characters but not whitespace. ‘->’ is conventional

STATE_DESTINATION :: integer indicating state number.

OUTPUT_VALUE :: two digit sequence to define one of the 12 output states. First
character can be 0, 1 or U. Second character can be s, r, z or u for 'strong', 'resistive',
'high-z', and 'undefined' respectively.

INPUT_VALUE :: 0, 1, x, or X

The idea is to have N state_def's where N is the number of states. Each state_def has
one header_line and a number of following continuation_lines. Both define the
destination state for a given combination of inputs. The header_line additionally
defines the state being defined and the output value for that state. Header lines and
continuation lines are distinguished by counting the tokens. The system does currently
not appear to fail gracefully if this is wrong. A header_line should have
(num_inputs+num_outputs+3) tokens and a continuation_line should have
(num_inputs+2).

The number of inputs and outputs is defined in the netlist line which is in the form:

Axxx [inputs] clk reset [outputs] modelname

Notes

Currently this model is unsupported as it has not undergone testing or analysis. It is
part of the original XSPICE system and should be compatible with other
implementations but this cannot be guaranteed.

The following is an example of a state transition specification file

* This is a simple example of a state machine state file
* It is a 2 bit up down counter with synchronous reset

*Present Outputs Inputs State destination
*State for state (reset, up/down)
180

Chapter 5 Digital/Mixed Signal Device Reference
0 0S 0S 0 0 -> 3
 0 1 -> 1
 1 0 -> 0
 1 1 -> 0

1 0S 1S 0 0 -> 0
 0 1 -> 2
 1 0 -> 0
 1 1 -> 0

2 1S 0S 0 0 -> 1
 0 1 -> 3
 1 0 -> 0
 1 1 -> 0

3 1S 1S 0 0 -> 2
 0 1 -> 0
 1 0 -> 0
 1 1 -> 0

See Examples/Digital_Devices/state_updown.sxsch

Toggle Flip Flop

Netlist entry

Axxxx t clk set reset out nout model_name

Connection details

Model format

.MODEL model_name d_tff parameters

Name Description Flow Type

t Toggle input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d
181

Simulator Reference Manual
Model parameters

Device Operation

The operation of the toggle flip flop is illustrated by the following diagrams. When the
T input is high, the output toggles on each rising edge of the clock. If the T input is
UNKNOWN the output will be UNKNOWN.

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - 

set_delay Delay from set real 1nS 1e-12 - 

reset_delay Delay from reset real 1nS 1e-12 - 

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

t_load Toggle load value (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
182

Chapter 5 Digital/Mixed Signal Device Reference
Tri-State Buffer

Netlist entry

Axxxx in enable out model_name

U1-CK

U1-QP

Toggle
U1

T

RST

SET

U2

U3 U1-T

Time/µSecs 2µSecs/div

0 2 4 6 8 10 12 14

U1-T

U1-QP

U1-CK

clk_delay+fall_delay
183

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_tristate parameters

Model parameters

Device Operation

This is a three terminal buffer device. The output state is equal to the input state and the
output strength is determined by the enable input as follows:

Name Description Flow Type

in Input in d

enable Enable in d

out Output out d

Name Description Type Default Limits

delay Delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

enable_load Enable load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Enable Output Strength

0 HI-IMPEDANCE

1 STRONG

UNKNOWN UNDETERMINED
184

Chapter 5 Digital/Mixed Signal Device Reference
Exclusive NOR Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_xnor parameters

Model parameters

Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic '1' if an even number
of inputs are at logic '1'. If any input is UNKNOWN the output will be
UNKNOWN, otherwise the output will be at logic '0'.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (pF) real 1 0 - 

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
185

Simulator Reference Manual
• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If n even number of inputs are at logic '1' the output
strength will be HI-IMPEDANCE allowing a pull-up resistor to force it to the
logic '1' state. If any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Exclusive OR Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_xor parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - 

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos. slope real out_res 0 - 

out_res_neg Digital output res. neg. slope real out_res 0 - 

open_c Open collector output boolean FALSE none
186

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic '1' if an odd number of
inputs are at logic '1'. If any input is UNKNOWN the output will be
UNKNOWN, otherwise the output will be at logic '0'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If an odd number of inputs are at logic '1' the output
strength will be HI-IMPEDANCE allowing a pull-up resistor to force it to the
logic '1' state. If any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Analog-Digital Converter

Netlist entry

Axxxx analog_in clock_in [data_out_0 data_out_1 .. data_out_n]
+ data_valid model_name

Connection details

Model format

.MODEL model_name ad_converter parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type Allowed
types

Vector
bounds

analog_in Analog input in v v, vd, i, id n/a

clock_in Clock input in d d n/a

data_out Data output out d, vector d 1 - 32

data_valid Data valid output out d d n/a

Name Description Type Default Limits
187

Simulator Reference Manual
Model parameters

Device Operation

This is a 1-32 bit analog to digital converter. The operation of this device is illustrated
by the following diagrams:

Name Description Type Default Limits

input_offset Offset voltage real 0 none

input_range Input full scale signal range real 1 none

twos_complement Use 2's complement
output. (default - offset
binary)

boolean FALSE none

convert_time Total conversion time real 1S 0 - 

min_clock Minimum clock period real 500n 0 - 

data_valid_delay Data valid inactive time real 100n 0 - 

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

family Logic family string UNIV none

input_load Input load real 1pF 0 - 

out_res Digital output resistance real 100 0 - 

out_res_pos Digital output res. pos.
slope

real out_res 0 - 

out_res_neg Digital output res. neg.
slope

real out_res 0 - 

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
188

Chapter 5 Digital/Mixed Signal Device Reference
U1-In

U1-Data_Valid

U1-D2

U1-D0
U1

ADC_4

Data_Valid

D3
D2
D1
D0In

V1
 Pulse(-2.5 2.5 0 160u 160u)

U2
U1-D1

U1-D3
U1-Clock

Time/µSecs 20µSecs/div

0 20 40 60 80 100 120 140 160

Analog in / V

-2

-1

0

1

2

U1-Data_Valid

U1-D3

U1-D2

U1-D1

U1-D0

U1-Clock

convert_time
189

Simulator Reference Manual
Conversion timings.

The ADC starts the conversion at the rising edge of the clock. The analog input signal
is also sampled at this point. The output data changes in response to this,
CONVERT_TIME seconds later. At the same time the data_valid output goes low
(inactive) then high again after a delay equal to DATA_VALID_DELAY. It is possible
to start a new conversion before the previous conversion is complete provided it is
started later than MIN_CLOCK seconds after the previous conversion was started.
MIN_CLOCK must always be less than CONVERT_TIME. If the MIN_CLOCK
specification is violated, the conversion will not start.

Analog-Digital Interface Bridge

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name adc_bridge parameters

Name Description Flow Type

in Input inout g

out Output out d

Time/µSecs 1µSecs/div

19 20 21 22 23 24

U1-D0

U1-Data_Valid

U1-Clock

convert_time

data_valid_delay
190

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

The analog-digital interface bridge is the main device used to connect analog signals to
digital inputs. The device produces a digital signal that is in the logic '1' state when the
analog input is above the high threshold (IN_HIGH) and a logic '0' state when it is
below the low threshold (IN_LOW). When the analog input is in between these two
states the output will be in the UNKNOWN state. The changes in state will be delayed
according to the RISE_DELAY and FALL_DELAY parameters.

Analog input load

The analog input presents a load to its driving circuit according to the digital load that
is being driven. In other words the digital load is reflected to the analog input. Both
static (i.e. DC) and dynamic (i.e. capacitance) elements of the load are reflected. To
accurately reflect the sink and source currents, the interface bridge needs to know the
voltage levels of the device it is driving. The digital device will (usually) have a
SINK_CURRENT and a SOURCE_CURRENT model parameter each of which apply
at defined logic voltage levels. These levels must be specified in the OUT_LOW and
OUT_HIGH parameters of the AD interface bridge model. The input is modelled by a
current source in parallel with a resistor. The values of these components are calculated
from the above mentioned parameters and the digital load.

Name Description Type Default Limits

in_low Maximum 0-valued analog
input

real 0.1 none

in_high Minimum 1-valued analog
input

real 0.9 none

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

time_tol Threshold time tolerance real 100pS 1e-12 - 

out_low Used to calculate reflected
static load. See text

real 0 none

out_high Used to calculate reflected
static load. See text

real 5 none

clamp_low Clamp threshold 'ZERO'
digital input. Default to
out_low

real out_low none

clamp_high Clamp threshold 'ONE' digital
input. Default to out_high

real out_high none

clamp_res Clamp minimum resistance real 1 1e-06 - 

clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none
191

Simulator Reference Manual
Input clamp

The analog input is clamped at the voltages specified by CLAMP_LOW and
CLAMP_HIGH. The clamping device has a characteristic similar but not identical to a
junction diode in series with a resistance. Basically it has the characteristic of a diode
up to a voltage excess of CLAMP_BIAS after which it becomes resistive with a
dynamic resistance of CLAMP_RES. The diode characteristics are calculated so that
the transition between the two regions is smooth.

Time Step Control - TIME_TOL parameter

Consider the following circuit and waveform

The graph shows the input and output of the NAND gate. Because the input is analog
an implicit AD interface bridge will have been connected by the simulator. In the
above example the parameters for this bridge have been set to:

.model HC_adc adc_bridge
+ in_low=2.1
+ in_high=2.2
+ rise_delay=1e-12
+ fall_delay=1e-12

V1
 Pulse(0 5 0 5u 5u 50u 100u)

HC00

U1

U1-IN2 U1-OUT

Time/µSecs 5µSecs/div

30 35 40 45 50 55 60 65 700

1

2

3

4

5

U1-OUT
192

Chapter 5 Digital/Mixed Signal Device Reference
+ out_family = "HC"
+ out_low = 0
+ out_high = 5
+ clamp_bias=0.5
+ clamp_res=10
+ time_tol=10u

The last parameter, TIME_TOL has been deliberately set ridiculously high to
demonstrate what happens without time step control on the input. The input thresholds
of the HC gate are 2.1 and 2.2 volts yet the output in the above example doesn't switch
until the input has reached 0V. Because there is little activity in the analog circuit, the
time steps are quite large. In fact in the above example the transient timepoints are at
55uS, 55.04uS, 56.2uS, 57.8uS and 60uS. The timepoint at 57.8u is just before the 2.2
volt threshold is reached and it isn't until the next time point, 2.2uS later that the lower
threshold is broken. The result is the location of the negative edge at the output is
delayed by approx. 2.2uS from where it should be. The problem is that the analog
system knows nothing of what is happening in the digital domain so carries on with
large timesteps oblivious to the errors in the digital system.

To overcome this problem. SIMetrix features a mechanism (not in the original XSPICE
system) that detects that the threshold has been passed and cuts back the time step to
ensure that the digital edge occurs at an accurate point. The accuracy of this
mechanism is controlled by the TIME_TOL parameter. The smaller this parameter, the
more accurately the exact threshold will be hit at the expense of short time steps and
longer simulation runs. TIME_TOL defaults to 100pS and in most applications this is a
good choice. The following shows the result when TIME_TOL is set to the default.

Here you can see the edge at the correct time.

The effect of not correctly simulating the threshold point has serious consequences
when attempting to simulate relaxation oscillators constructed with digital inverters as
the following graphs illustrate:

Time/µSecs 2µSecs/div

50 52 54 56 58 60 620

1

2

3

4

5

U1-OUT
193

Simulator Reference Manual
The top trace is without threshold control and the bottom trace is with it.

Digital-Analog Converter

Netlist entry

Axxxx [digital_in_0 digital_in_1 .. digital_in_n]
+ analog_out model_name

Connection details

Model format

.MODEL model_name da_converter parameters

Name Description Flow Type Allowed
types

Vector
bounds

digital_in Data output in d d 1 - 32

analog_out Analog output out v v, vd, i, id n/a

-2

0

2

4

6

8

Time/mSecs 200µSecs/div

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

194

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

This device is a 1-32 bit digital to analog converter. Its operation is illustrated by the
following diagrams.

Name Description Type Default Limits

output_offset Offset voltage real 0 none

output_range Input signal range real 1 none

twos_complement Use 2's complement input.
(Default is offset binary)

boolean FALSE none

output_slew_time Output slew time real 10nS 1e-12 - 

in_family Input logic family string UNIV none

input_load Input load real 1pF 0 - 

sink_current Input sink current real 0 none

source_current Input source current real 0 none

U2-D3

U2-D1 U1-OUT

U2
Counter_4

D3

D2

D1

D0
U3

U4
DAC_4

D3

D2

D1

D0

OUT

U2-D0

U2-D2
195

Simulator Reference Manual
DAC waveforms

DAC waveforms expanded to show output slew

Time/µSecs 10µSecs/div

0 10 20 30 40 50-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

U2-D3

U2-D2

U2-D1

U2-D0

Time/µSecs 5nSecs/div

7.985 7.99 7.995 8 8.005 8.01 8.015 8.02 8.025

-400

-200

0

200

400

U2-D3

U2-D2

U2-D1

U2-D0

output_slew_time
196

Chapter 5 Digital/Mixed Signal Device Reference
The device illustrated above has the following model definition:

.model DAC_4 da_converter
+ output_slew_time 1e-08
+ output_range 5
+ output_offset 0

In offset binary mode the D-A converter produce an output voltage equal to:

-OUTPUT_RANGE/2 + OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as an
unsigned number between 0 and 2n-1.

In 2's complement mode the output is:

OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as a signed
number between -2n/2 and 2n/2-1.

Whenever the input code changes, the output is set on a trajectory to reach the target
value in the time specified by OUTPUT_SLEW_TIME. UNKNOWN states are
ignored. That is the input will be assumed to be at the most recent known state.

Digital-Analog Interface Bridge

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name dac_bridge parameters

Name Description Flow Type

in Input in d

out Output inout g
197

Simulator Reference Manual
Model parameters

DC characteristics

This digital to analog interface bridge is the main device used to connect digital signals
to analog devices. The output provides an analog voltage and source resistance
according to the state and strength of the driving digital input. The output has a non-
linear characteristic that is a simplified model of a typical digital output stage. The
following graphs show the output characteristics for the supplied high speed CMOS
DA bridge. This has the following model parameters:

.model HC_dac dac_bridge
+ out_high=5 ; Logic high voltage
+ input_load=-31p ; Compensates for added rise and fall time
+ t_rise=2n ; Output rise time
+ t_fall=2n ; Output fall time
+ g_pullup=0.024 ; 1/(logic high output resistance)
+ g_pulldown=0.034 ; 1/(logic low output resistance)
+ g_hiz=1e-9 ; 1/(high impedance output res)
+ knee_low = 2.0 ; voltage at resistive/constant current

Name Description Type Default Limits

out_low Analog output for 'ZERO'
digital input

real 0 none

out_high Analog output for 'ONE'
digital input

real 5 none

g_resistive Output conductance for
'RESISTIVE' digital input

real 0.001 none

g_pullup Output conductance for
'STRONG' digital high input

real 0.01 none

g_pulldown Output conductance for
'STRONG' digital low input

real 0.01 none

g_hiz Output conductance for
'HI_IMPEDANCE' strength

real 1.00E-
09

none

input_load Capacitive input load (F) real 1pF none

t_rise Rise time 0 -> 1 real 1nS 1e-12 - 

t_fall Fall time 1 -> 0 real 1nS 1e-12 - 

knee_high Knee voltage logic high state real 3 none

knee_low Knee voltage logic low real 2 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

v_smooth Smoothing function offset
voltage

real 0 0 - 

in_family Input logic family string UNIV none
198

Chapter 5 Digital/Mixed Signal Device Reference
+ ; knee logic low
+ knee_high =2.75 ; voltage at resistive/constant current

+ ; knee logic high
+ v_smooth = 0.5 ; Knee smoothing band
+ in_family="HC"

Logic '0' state - strength = STRONG

In the above graph, the slope of the curve at V=0 is determined by the
G_PULLDOWN parameter. The ‘knee smoothing band’ is a transitional area where
the output switches from a constant resistance to a constant current. The smoothing
characteristic is a quadratic and is calculated to be smooth at all points. This is required
for good convergence behaviour. The knee smoothing band starts at KNEE_LOW-
V_SMOOTH and finishes at KNEE_LOW+V_SMOOTH.

v1/V 500mV/div

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10

20

30

40

50

60

knee_low

Slope = g_pulldown

Output
Current/mA

Knee smoothing band
199

Simulator Reference Manual
Logic '1' state - strength = STRONG

If a state with RESISTIVE strength is applied to the input of a digital to analog
interface bridge, the output has the characteristic of a pure resistor connected to the
voltage associated with the input's state. In the example given above, this would be a
1k resistor connected to 0V for the logic '0' state and a 1k resistor connected to +5V for
the logic '1' state. (1k is 1/G_RESISTIVE)

For the HI-IMPEDANCE strength, the output will look like a resistor of value 1/
G_HIZ connected to a voltage half way between the two analog output states. (1G
connected to 2.5V in the above example.)

When the input state is UNKNOWN the output will be as if it were half way between
the two known states. This is a compromise solution. The UNKNOWN state does not
have a parallel in the analog domain so instead it is treated as a transitional state. In
some cases the UNKNOWN state occurs in transitional cases although this is not the
correct meaning of UNKNOWN.

Switching Characteristics

When the logic state at the input changes, the output will transition from the current
state to the target state in a time determined by T_RISE or T_FALL according to the
direction of the state change.

Controlled Digital Oscillator

Netlist entry

Axxxx cntl_in out model_name : parameters

v1/V 1V/div

0 1 2 3 4 5

-50

-40

-30

-20

-10

Output
Current/mA

Slope = g_pullup

knee_high
200

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Instance Parameters

Model format

.MODEL model_name d_osc parameters

Model parameters

Name Description Flow Type Allowed
types

cntl_in Control input in v v, vd, i, id

out Output out d d

Name Description Type

init_phase Initial phase real

Name Description Type Default Limits Vector
bounds

cntl_array Control array real vector N/A none 2 - 

freq_array Frequency array real vector N/A 0 -  2 - 

duty_cycle Output duty cycle real 0.5 1 -
0.999999

n/a

init_phase Initial phase of
output

real 0 -180 -
+360

n/a

rise_delay Rise delay real 1n 0 -  n/a

fall_delay Fall delay real 1n 0 -  n/a

phase_tol Phase tolerance/
degrees

real 10 0 - 45 n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 -  n/a

out_res_pos Digital output res.
pos. slope

real out_res 0 -  n/a

out_res_neg Digital output res.
neg. slope

real out_res 0 -  n/a
201

Simulator Reference Manual
Device Operation

This device produces an output frequency controlled by an analog input signal
following an arbitrary piece-wise linear law. The input to output frequency
characteristic is defined by two parameters CNTL_ARRAY and FREQ_ARRAY. The
following is an example of a .MODEL statement:

.model vco d_osc
+ cntl_array=[-1,0,1,2,3,4,5]
+ freq_array=[0,10000,40000,90000,160000,250000,360000]

The frequency characteristic described by the above example follows a square law. The
two arrays CNTL_ARRAY and FREQ_ARRAY must be the same length. These define
the frequency output for a given analog input.

Time Step Control

In order to control the accuracy of the phase of the output signal, this model may cut
back the analog time step. At each analog time point, the required frequency is
calculated and the digital output is set at that frequency. If the analog input changes by
too large an amount between time points, the digital output phase could be
substantially in error as the frequency is constant between analog time points. The
actual error is calculated and if this exceeds PHASE_TOL, the time point is rejected
and a time point at which the error will be in tolerance is estimated.

Note: This model was included with the original XSPICE code but the SIMetrix
version has been completely re-written. The original did not have any phase error
control and could not give accurate results unless the analog time step was artificially
kept small.

 Analog-Digital Schmitt Trigger

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name adc_schmitt parameters

Name Description Flow Type Allowed
types

in Input inout g g, gd

out Output out d d
202

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

This device is basically identical to the Analog-Digital Interface Bridge described on
page 190. The only difference is the behaviour of the device when the analog input lies
between the threshold voltages. With the interface bridge, the output is UNKNOWN
under these circumstances but with this Schmitt Trigger, the output retains its previous
value and so is always in a known state. In summary, the output will only switch from
low to high when the input exceeds the higher threshold (IN_HIGH) and will only
switch from high to low when the input descends below the lower threshold
(IN_LOW).

If initial input voltage lies between the hysteresis thresholds, the output state is
determined by the init_cond parameter.

Name Description Type Default Limits

in_low Maximum 0-valued analog
input

real 0.1 none

in_high Minimum 1-valued analog
input

real 0.9 none

rise_delay Rise delay real 1nS 1e-12 - 

fall_delay Fall delay real 1nS 1e-12 - 

time_tol Threshold time tolerance real 100pS 1e-12 - 

out_low Analog out for 'ZERO' input real 0 none

out_high Analog output 'ONE' input real 5 none

clamp_res Clamp minimum resistance real 1 1e-06 - 

clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none

init_cond Initial condition real 0 none
203

Simulator Reference Manual
Chapter 6 Command Reference

Overview

Simulator commands instruct the simulator how to read in and simulate the circuit. All
simulator commands begin with a period (.) .

For the remainder of this chapter and elsewhere in this manual, simulator commands
are referred to as ‘Statements’ to distinguish them from commands entered in the
command shell.

The schematic editor supports some of the statements described in this chapter but not
all. Unsupported analysis statements may be added manually to the schematic's netlist.
See “Adding Extra Netlist Lines” on page 13 for details.

.MODEL and .SUBCKT statements may also appear in model library files (in fact that
is where they would usually reside) see User's Manual for details. The .ALIAS
statement may only appear in model library files.

The following simulator statements are recognised by SIMetrix.

Statement Manual Page

.AC 209

.DC 211

.ENDF 213

.ENDS 261

.FILE 213

.FUNC 214

.GLOBAL 215

.GRAPH 215

.IC 221

.INC

.INCLUDE
222

.KEEP 222

.LOAD 226

.LIB 227

.MODEL 228

.NOCONV 232

.NODESET 232

.NOISE 233
204

Chapter 6 Command Reference
The following statement is only recognised in model library files.

.ALIAS page 210

General Sweep Specification

Overview

SIMetrix features a common sweeping algorithm which is used to define the swept
analysis modes: .DC, .AC, .NOISE and (now) .TF, along with multiple analyses such
as Monte Carlo.

The sweep algorithm has 6 modes:

• Device. Sweeps a single default value of a specified device. E.g. voltage of a
voltage source, resistance of a resistor or the capacitance of a capacitor.

• Temperature

• Parameter. Parameter can be referenced in an expression for a model or instance
parameter.

• Model parameter. Named model parameter.

• Frequency. (Not applicable to .DC)

• Monte Carlo. Perform a specified number of steps with distribution functions (i.e
tolerances) enabled.

.OP 236

.OPTION

.OPTIONS
237

.PARAM

.PARAMETER
251

.POST_PROCESS 254

.PRINT 254

.SENS 256

.SETSOA 256

.SUBCKT 261

.TEMP 262

.TF 262

.TRACE 264

.TRAN 265

Statement Manual Page
205

Simulator Reference Manual
Standard SPICE only provides a subset of the above. .DC can only sweep voltage and
current sources, .AC and .NOISE can only sweep frequency while .TF can't be swept at
all.

As well as providing 6 modes, each of the modes can sweep in four different ways.
These are linear, decade, octave and list.

Syntax

All the swept analysis modes use the same general syntax to specify the sweep
parameters. However, to maintain compatibility with SPICE and its derivatives
including earlier versions of SIMetrix, each analysis mode allows variations to this
standard syntax. The general syntax is described below while the variations allowed
for each analysis mode are described in the section dedicated to that analysis mode.

All of the analysis modes can optionally be entered in a similar manner to .MODEL
statements i.e. as an unordered list of parameter names followed by their values. For
example, the following is a perfectly legal noise analysis specification:

.noise V=vout DEVICE=V1 VN=0 F=1k LIN=(100 -10m 10m)
+ INSRC=V1

In the various forms of the syntax described in the following sections, some of the
parameter names may be omitted as long as they are entered in a particular order. It is
sometimes, however, easier to remember parameter names rather than a default order,
so the method described above may be more convenient for some users.

General syntax for swept analyses

.AC|.DC|.NOISE|.TF sweep_spec [analysis specific parameters]

sweep_spec:
One of the following:

DEVICE device_name step_spec F frequency

TEMP step_spec F frequency

PARAM param_name step_spec F frequency

MODEL model [PARAM] mod_param_name step_spec F frequency

FREQ step_spec

MONTE num_steps F frequency

Where

device_name Name of device to be swept. The following components may be
swept:
Capacitors, all controlled sources, fixed current source, fixed
voltage source, inductors and resistors.

param_name Name of parameter used in expression. Expressions may be
used to define an instance or model parameter and may also be
206

Chapter 6 Command Reference
used in arbitrary sources.

model Name of model containing parameter to be swept

mod_param_name Name of model parameter

num_steps Number of steps to be performed for Monte Carlo sweep.

frequency Specified frequency for which .NOISE, .AC and .TF analyses
are to be performed. May be zero for .AC and .TF.

step_spec:
One of the following:

STP start stop step

LIN num_points start stop

DEC num_points_decade start stop

OCT num_points_octave start stop

LIST val1 [val2 ...]

Where:

start First value

stop Last value (inclusive)

step Interval

num_points Total number of points

num_points_decade Number of points per decade

num_points_octave Number of points per octave

STP and LIN modes are both linear sweeps but specified differently. STP specifies
start, stop and a step size, while LIN specifies start, stop and the total number of points.

Multi Step Analyses

Overview

The sweep specification described in “General Sweep Specification” on page 205 can
also be applied to define multiple analyses including Monte Carlo analysis. This can be
applied to the swept modes .DC, .AC, .NOISE and .TF along with .TRAN. The
analyses .SENS, .PZ and .OP cannot be run in multi-step mode. A multi-step .OP is in
fact the same as .DC so this is not required. Monte Carlo analysis is the subject of its
own chapter (see page 270) but it is invoked in the same way as other multi-step
modes. As well as the standard 6 sweep modes, small-signal multi-step analyses can be
run in snapshot mode which uses snapshots created by a previous transient analysis.

Syntax

The general form is:
207

Simulator Reference Manual
.analysis_name analysis_parameters SWEEP
+ [sweep_spec] | [SNAPSHOT STP snapstart snapstop snapstep] |
[SCRIPTCOUNT=numscriptruns SCRIPT=script] [
NUMCORES=num_cores]

Where:

.analysis_name Dot statement for analysis

analysis_parameters Specific parameters for that analysis

sweep_spec See “General Sweep Specification” on page 205

SNAPSHOT Use snapshots created by a previous transient analysis. For full
details, see “Snapshots” on page 267

snapstart Index of first snapshot. Snapshots are counted in the order in
which they are created. The first is 0. Use STP 0 0 0 to specify
all available snapshots.

snapstep Index of last snapshot

snapstep Snapshot interval (usually 1)

numscriptruns Number of repeat steps using script. If present, the script script
is called for each step. The script may use the function
GetCurrentStepValue() to determine the step number (base 1,
i.e. the first step is 1, the second 2 etc.). The functions
SetInstanceParamValue() and SetModelParamValue() may be
used to change model or instance parameters

script Script called for each step

num_cores If specified and greater than 1, the work for the run will be
shared amongst num_cores processor cores using multiple
processes. More information about using multiple cores can be
found in the User’s Manual, Chapter 7, Using Multiple Cores
for Multi-step Analyses.

Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

As above but does 1000 steps split over 4 cores. So each core will do 250 steps.
Requires a system equipped with at least 4 physical processor cores.

.TRAN 1m SWEEP MONTE 1000 NUMCORES=4

Sweep V1 from 0 to 5 volts in 0.1V steps for 200us transient

.TRAN 200u SWEEP DEVICE V1 STP 0 5 0.1

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 6 times for parameter
restail from 450 to 550.
208

Chapter 6 Command Reference
.AC DEVICE=V5 LIN 100 -300m 300m F=100000
+ SWEEP PARAM=restail LIN 6 450 550

Run AC sweep using all available snapshots

.AC DEC 100k 10G SWEEP SNAPSHOT STP 0 0 0

.AC

.AC inner_sweep_spec [F frequency] [RUNNAME=runname] [
SWEEP outer_sweep_spec]

Spice compatible frequency sweep:
.AC DEC|LIN|OCT num_points start stop

Instructs the simulator to perform a swept small signal AC analysis. SIMetrix AC
analysis is not limited to a frequency sweep as it is with generic SPICE and
derivatives. See “General Sweep Specification” on page 205 and examples below for
more details.

frequency Frequency at which analysis will be performed for non-
frequency sweeps. Default 0.

inner_sweep_spec See “General Sweep Specification” on page 205 for syntax.
Defines sweep mode. FREQ keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this
specification. See “General Sweep Specification” on page 205
for syntax.

num_points LIN: total number of points
DEC: number of points per decade
OCT: number of points per octave

start Start frequency for SPICE compatible mode

stop Stop frequency for SPICE compatible mode

runname If specified, the value for runname will be passed to the
simulation data group as a string variable with name
UserRunName. This may be used to identify which analysis
generated the data which is useful when running netlists with
multiple analyses defined

Except for frequency sweep, the frequency at which the analysis is being performed
should be specified. If omitted, the frequency will be assumed to be zero.

For non-frequency sweeps, a new dc operating point may be calculated at each step
depending on what is being swept. If a capacitor, inductor or an ‘AC only’ model
parameter is being swept, then no new dc operating point will be required. Otherwise
one will be performed. An ‘AC only’ parameter is one that does not affect DC
operating point such as device capacitance.
209

Simulator Reference Manual
Notes

An AC analysis calculates the small signal frequency response of the circuit about the
dc operating point. The latter is automatically calculated prior to commencing the
frequency sweep. One or more inputs may be specified for AC analysis by using
voltage or current sources with the AC specification (See “Voltage Source” on
page 123). The results of an AC analysis are always complex.

Examples

SPICE compatible. Sweep frequency from 1kHz to 1Meg

.AC DEC 25 1k 1MEG

Sweep voltage source V1 100 points from -100mV to 100mV. Frequency = 100kHz

.AC DEVICE V1 LIN 100 -100m 100m F=100k

Sweep parameter Rscale from 0.5 to 3 in steps of 0.1. Frequency=20Meg

.AC PARAM Rscale STP 0.5 3 0.1 F=20Meg

Sweep resistor R1 with values 10k 12k 15k 18k 22k 27k 33k, Frequency =1.1KHz

.AC DEVICE R1 LIST 10k 12k 15k 18k 22k 27k 33k F=1.1K

Monte Carlo sweep 100 steps. Frequency = 10K.
This is useful if - say - you are interested in the gain of an amplifier at one frequency
and it needs to lie within a defined tolerance. Previously you would need to repeat an
AC sweep at a single frequency to achieve this which could take a long time especially
if the circuit has a difficult to find operating point. The analysis defined by the
following line will take very little time even for a large circuit.

.AC MONTE 100 F=10K

Examples of Nested Sweeps

As Monte Carlo above but repeated from 0 to 100C

.AC MONTE 100 F=10K SWEEP TEMP STP 0 100 10

... and at a number of frequencies

.AC MONTE 100 SWEEP FREQ DEC 5 1k 100k

.ALIAS

.ALIAS alias_name device_name device_type

This statement may only be used in device model library files. It is not recognised by
the simulator. It permits a device model or subcircuit to be referenced by a different
name. This allows one model definition to be used for multiple part numbers.
210

Chapter 6 Command Reference
alias_name Alias name

device_name Device to which alias refers

device_type Type of device to which alias refers. Must be one of the
following
C, D, LTRA, NJF, NMF, NMOS, NPN, PJF, PMF, PMOS, PNP,
R, SW or SUBCKT.
see “.MODEL” on page 228 for more details.

Example

.MODEL BC547C NPN
+ IS=7.59E-15 VAF=19.3 BF=500 IKF=0.0710 NE=1.3808
+ ISE=7.477E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1 BR=5
+ RC=0.75 CJC=6.33E-12 FC=0.5 MJC=0.33 VJC=0.65
+ CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.12E-10 ITF=0.4 VTF=3
+ XTF=12.5 RB=172 IRB=0.000034 RBM=65

.ALIAS BC549C BC547C NPN

The above would provide identical definitions for both BC547C and BC549C bipolar
transistors.

Notes .ALIAS definitions will recognise models defined in other files provided
the file in which the alias resides and the file in which the model definition
resides are part of the same library specification. A library specification is a
single pathname possibly with a wildcard ('?' or '*') to refer to multiple
files. E.g. /simetrix/models/*.mod is a library specification and refers to all
files with the extension '.mod' in the directory /simetrix/models.

Aliases must refer directly to a model or subcircuit definition and not to
other aliases.

.DC

.DC inner_sweep_spec [RUNNAME=runname] [SWEEP
outer_sweep_spec]

Spice compatible:
.DC device_name start stop step

The remainder are SIMetrix 2.5 - 3.1 compatible:
.DC TEMP start stop step

.DC PARAM param_name start stop step

.DC MODEL model [PARAM] mod_param_name start stop step

Instructs simulator to perform a DC sweep analysis. A dc analysis performs a dc
operating point analysis for a range of values according to the sweep specification.
SIMetrix DC analysis is not limited to sweeping a voltage or current source as with
211

Simulator Reference Manual
generic SPICE. Any mode defined by the general sweep specification (page 205) may
be used although frequency sweep has no useful purpose.

inner_sweep_spec See “General Sweep Specification” on
page 205 for syntax. Defines sweep mode.
DEVICE keyword is optional.

outer_sweep_spec If specified, analysis will be repeated
according to this specification. See “Multi Step
Analyses” on page 207 for details.

device_name Component reference of voltage source,
current source, resistor or controlled source to
be swept. (Only voltage and current sources are
SPICE compatible)

start Start value for sweep

stop Stop value for sweep

step Increment at each point

param_name Parameter name. This would be used in an
expression to define a component or model
value.

model_name Model name e.g. Q2N2222

model_parameter_name Model parameter name e.g. IS

runname If specified, the value for runname will be
passed to the simulation data group as a string
variable with name UserRunName. This may
be used to identify which analysis generated
the data which is useful when running netlists
with multiple analyses defined

If start is arithmetically greater than stop then step must be negative.

It is not necessary to declare parameters with .PARAM if using parameter sweep.

Examples

SPICE compatible. Sweep V1 from 0 to 5 volts in steps of 0.1 volt

.DC V1 0 5 0.1

SIMetrix 3.1 compatible temperature sweep

.DC TEMP 0 100 2

Decade (i.e. logarithmic) sweep. Sweep V1 from 1mV to 1V with 25 points per decade

.DC V1 DEC 25 1m 1v

Note that the DEVICE keyword has been omitted. This is the default sweep mode for
.DC.
212

Chapter 6 Command Reference
Do 1000 Monte Carlo steps. This performs the same task as a Monte Carlo analysis
applied to a DC operating point. In other products and earlier versions of SIMetrix this
task would take a long time as the operating point is solved from scratch each time.
With the mode described by the following example, the operating point need only be
calculated from scratch once. All subsequent steps are seeded by the previous one and
usually require only a few iterations. The end result is a sometimes spectacular
increase in speed.

.DC MONTE 1000

Examples of Nested Sweeps

Decade sweep at temperatures 0 to 100 in steps of 10

.DC V1 DEC 25 1m 1v SWEEP TEMP STP 0 100 10

Note the STP keyword is necessary to signify the start-stop-step method of defining a
linear sweep. Alternatively LIN can be used which defines the sweep in terms of the
total number of points. The following is equivalent to the above:

.DC V1 DEC 25 1m 1v SWEEP TEMP LIN 11 0 100

Do 100 run Monte Carlo analysis for temperature sweep

.DC TEMP 0 100 2 SWEEP MONTE 100

.FILE and .ENDF

.FILE filename

file_contents

.ENDF

The .FILE statement allows the contents of a file referenced in a .MODEL statement to
be placed directly in the netlist. Files are referenced in arbitrary logic blocks
(page 308), PWLFILE voltage and current sources (page 126), digital sources
(page 157) and digital state machines (page 179). Each of these may refer to files
defined using .FILE and .ENDF.

Example

.MODEL COUNT_8 d_logic_block file=counter_def

.FILE counter_def
PORT (DELAY = 10n) CountOut out[0:7] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count = Count + 1 ;

CountOut = count ;
.ENDF
213

Simulator Reference Manual
The .MODEL statement refers to a file called ‘counter_def’. This could be a real disk
file called counter_def or counter_def.ldf, but in the above example it is instead
defined directly in the netlist using .FILE and .ENDF

Important Note

.FILE and .ENDF will not be recognised in library files.

.FUNC

.FUNC name ([arglist]) { body }

name Name of function. Must begin with a letter and not match one of
the built in functions.

arglist List of comma separated argument names. May be empty in
which case the function may be called without the parentheses.
This is useful for creating random variables for Monte Carlo
analysis.

body Body of function. This is an expression referring to the names in
arglist that defines the operation performed by the function

.FUNC defines a function that can be used in a model or device parameter expression,
a parameter defined using .PARAM or in an arbitrary source expression.

Examples

.FUNC FREQ(V) { (V)*120K }

.FUNC SWEEP(V) { SIN(TIME*FREQ(v)*2*PI) }

.FUNC RV1() { GAUSS(0.1) }

The third example may be called without parentheses as it has no arguments. E.g.:

.PARAM random1 = rv1 random2 = rv1

In the above, random1 and random2 will have different values when run in a Monte
Carlo analysis.

Optimiser

Any expression that uses a function defined with .FUNC will be automatically
processed by an optimisation algorithm. For more information see “Optimisation” on
page 43

 The optimiser attempts to speed simulations by making the expression evaluation
more efficient. The optimiser is effective when .FUNC is used to create very complex
expressions perhaps to develop a semiconductor device. In simple applications it may
not make a noticeable improvement to performance. The optimiser can be enabled for
all expressions and can also be disabled completely. To enable for all expressions use:

.OPTIONS optimise=2

To disable:
214

Chapter 6 Command Reference
.OPTIONS optimise=0

.GLOBAL

.GLOBAL node [node...]

Identifies nodes as global. This allows nodes specified at the top level of a circuit to be
accessed within a subcircuit definition. For more information see “Subcircuits” on
page 44.

.GRAPH

Parameters

.GRAPH signal_name|"expression"
+ [persistence = persistence]
+ [axisname = axisname]
+ [graphname = graphname]
+ [axistype = digital|grid|axis|auto]
+ [curvelabel = curvelabel]
+ [xlabel = xlabel]
+ [ylabel = ylabel]
+ [xunit = xunit]
+ [yunit = yunit]
+ [xmin = xmin]
+ [ymin = ymin]
+ [xmax = xmax]
+ [ymax = ymax]
+ [analysis = analyses_list]
+ [ylog = lin|log|auto]
+ [xlog = lin|log|auto]
+ [nowarn = true|false]
+ [initXLims = true|false]
+ [complete = true|false]
+ [order = order]
+ [colour = colour]

.GRAPH instructs SIMetrix to plot a graph of the specified signal or expression. The
graph can be plotted incrementally as the simulation proceeds or may be delayed until
the run is complete.
215

Simulator Reference Manual
Parameter
name

Type Description

signal_name |
expression

string Specifies item to be plotted. If this is an
expression, then it must be enclosed in double
quotation marks or curly braces.

persistence integer Number of curves to be displayed at once. On
repeated runs, any curves from earlier runs
remain until the number of curves exceeds this
value at which point the oldest is deleted
automatically. If this parameter is absent or
zero, the curves are never deleted.

graphname string If specified, the curves will be directed to their
own graph sheet within the current window.
The value of graphname is arbitrary and is
used to identify the graph so that multiple
.graph statements can specify the same one. It
works in a similar way to axisname an example
of which is given below. This name is not used
as a label for display purposes but simply as a
means of identification.

axistype string Can be one of four values to specify type of y-
axis:
 DIGITAL. Use a digital axis. This is a

small axis that carries only one
curve. It is intended for digital
signals but may also carry analog
curves.

 GRID. Use a separate grid stacked
on top of the main one. The
AXISNAME parameter may be used
to identify a particular grid used by
another .GRAPH statement.

 AXIS. Use a separate y-axis
alongside the main one. The
AXISNAME parameter may be used
to identify a particular axis used by
another .GRAPH statement.

 AUTO. This is the default value. A
suitable axis is chosen
automatically.
216

Chapter 6 Command Reference
axisname string This is only used if AXISTYPE is specified.
The value of AXISNAME is arbitrary and is
used to identify the axis so that multiple .graph
statements can specify the same one. An
example of this is given below. This name is
not used as a label for display purposes but
simply as a means of identification. Axes can
be labelled using ylabel and xlabel.

curvelabel string Label for curve displayed in graph legend. If
omitted, the label will be the signal name or
expression.

xlabel string Label for x-axis. Default is reference of curve
being plotted (E.g. time, frequency etc.)

ylabel string Label for y-axis. If there is only a single curve,
this will default to the label for the curve
otherwise the default is blank.

xunit string Units for x-axis. Default is units of reference.

yunit string Units for y-axis. Default is units of curves
plotted provided they are all the same. If any
conflict, the default will be blank

xmin real Minimum limit for x-axis. Must be used with
xmax.

xmax real Maximum limit for x-axis. Must be used with
xmin.

ymin real Minimum limit for y-axis. Must be used with
ymax.

ymax real Maximum limit for y-axis. Must be used with
ymin.

analysis string Specifies for what analysis modes the plot
should be enabled. By default it will be enabled
for all analysis modes. Any combination of the
following strings, separated by a pipe ('|')
symbol.
 TRAN. Transient analysis
 AC. AC analysis
 DC. DC sweep analysis
 NOISE. Noise analysis
 POP. POP analysis - SIMPLIS only

Other analysis modes do not produce results
that can be probed

Parameter
name

Type Description
217

Simulator Reference Manual
ylog string One of three values

LIN Use linear axis
LOG Use log axis
AUTO Axis will be log if x values are log

spaced. (E.g for decade AC sweep)
and all values are positive.

Default if omitted: LIN

xlog string One of three values

LIN Use linear axis
LOG Use log axis
AUTO Axis will be log if x values are log

spaced. (E.g for decade AC sweep)
and all values are positive.

Default if omitted: AUTO

nowarn Boolean If true, no warnings are given if an attempt is
made to plot a non-existent signal. Default:
false.

initXLims Boolean When this is TRUE, the x-axis limits are
initialised according to the analysis. E.g. if the
analysis is transient and runs from 0 to 1mS,
the x-axis will start with these limits. If set to
FALSE, the x-axis limits are calculated to fit the
curve and updated incrementally. You should
set this to FALSE if you are plotting an
expression whose x values are not the same
as the x values for the analysis e.g. using the
XY() function for an X-Y plot.

The default value of this option is usually true
but can be changed using the option
NoInitXAxisLimits . Type at the command line:
“Set NoInitXAxisLimits” to change default to
false.

complete Boolean If true, the plot is not produced until the
analysis is completed. Otherwise the plot is
updated at a rate determined by the global
option ProbeUpdatePeriod. This is forced for
some types of plot as certain expressions
cannot be plotted incrementally.

This can be set using the options dialog box
(File | Options | General…). Default: false.

Parameter
name

Type Description
218

Chapter 6 Command Reference
The .GRAPH statement is the underlying simulator mechanism used by the
schematic's fixed probes. See User's Manual for details.

.GRAPH supersedes the older and less flexible .TRACE (page 264). The latter is,
however, still supported and may sometimes be convenient for specifying multiple
signals on one line.

Using Multiple .GRAPH Statements

If specifying several .GRAPH statements to plot a number of curves on the same
graph, you should make sure that the various parameters are consistent. If for example,
a conflict arises if you specify xmin and xmax for two .GRAPHs that plot curves in the
same graph sheet, and the values for xmin and xmax are different for each. You can
specify xmin and ymin for just one of the .GRAPH statements or you can specify for
all and make sure they are all the same. The same applies to other non-Boolean
parameters i.e. ymin, ymax, xlabel, ylabel, xunits and yunits. The parameter
initXLims, however must be specified with the same value for all .GRAPH statements
specifying the same graph sheet.

Conflicting values of ylog and xlog are resolved by plotting the curves on separate
axes or graph sheets respectively.

Creating X-Y Plots

To create an X-Y plot, use the XY() function (See User's Manual or Script Reference
Manual for full details of available functions). You should also specify
"initXLims=false". E.g.

.GRAPH "XY(imag(vout), real(vout))" initXLims=false
+ xlog=LIN complete=true

order string Arbitrary string used to control the display
order of digital traces. Digital traces are
displayed in an order that is determined by the
alphanumeric sort order of the order value. If
omitted, the curvelabel value is used instead.

colour string Number representing an RGB value of the
colour of the final trace. The number, when
converted to hexadecimal, is in the form:

bbggrr

where bb is the blue value, gg is the green
value and rr is the red value. So, 16711680 -
FF0000 in hexadecimal is deep blue.

Parameter
name

Type Description
219

Simulator Reference Manual
The above will create a Nyquist plot of the vector VOUT.

Using .GRAPH in Subcircuits

.GRAPH maybe used in a subcircuit in which case a plot will be produced for all
instances of that subcircuit. Note, however, that it will only work for single values and
not for expressions when inside a subcircuit. The value of the curveLabel parameter
will be prefixed with the instance name so that the displayed curves can be correctly
identified.

Using Expressions with .GRAPH

You can enter an expression as well as single vectors to be plotted. A problem arises
when plotting expressions incrementally that are regularly updated while the
simulation is running. SIMetrix versions prior to v5 could not incrementally evaluate
expressions, so each time the plot of an expression was updated, the expression had to
be recalculated from the beginning. This was inefficient and it has always been
recommended that the complete=true flag was added in these circumstance to inhibit
incremental plotting.

SIMetrix - from version 5 - now has the ability to incrementally evaluate some
expressions and there is no longer a recommendation to set complete=true. However,
certain expression cannot be incrementally evaluated and when such expressions are
entered, incremental plotting will automatically be disabled and the plot won't appear
until the run is complete.

A notable example of expressions that cannot be incrementally evaluated is anything
containing the phase() function. This is because the phase() function uses a state
machine to determine when the phase wraps from -180 to 180 and back. An offset is
then applied to make the phase plot continuous. Because of the state machine, it is
always necessary to evaluate this function from start to finish which makes
incremental evaluation difficult. An alternative is to use instead the arg() function. This
is the same as phase, but does not have the state machine and always gives an output
that lies between +/- 180 degrees.

Plotting Spectra with .GRAPH

You can use .GRAPH to create spectrum plots using FFTs or Fourier. However, FFT is
quite difficult to use on its own as it needs interpolated data. So, a new user defined
function called Spectrum() has been developed that is especially designed for use with
.GRAPH. Usage is:

Spectrum(vector, numPoints [, start [, stop]])

Where:

vector Vector or expression

numPoints FFT size - must be a binary power of 2

start Start time - default = 0

stop Stop time - default = end of data
220

Chapter 6 Command Reference
Spectrum() cannot be incrementally evaluated and so incremental plotting will
automatically be disabled for any .GRAPH statement that uses it. See above “Using
Expressions with .GRAPH”.

Examples

.GRAPH C2_P curveLabel="Amplifier output" nowarn=true

Plots the vector C2_P and gives it the label ‘Amplifier output’. As NOWARN is
TRUE, no warning will be given if C2_P does not exist.

.GRAPH vout_quad
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="Quadrature"
+ nowarn=true
+ analysis = TRAN|DC

.GRAPH vout
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="In Phase"
+ yLabel="Filter Outputs"
+ nowarn=true
+ analysis = TRAN|DC

The above illustrates the use of the parameters AXISTYPE and AXISNAME. Both the
vectors specified by the above .GRAPH statements will be plotted on the same but
separate grid. Because both grids have been given the AXISNAME grid1, each curve
will be plotted on the same one. If the values of axisname for the above were different,
each curve would be plotted on a separate grid. The ANALYSIS parameter has been
specified in both cases, so plots will only be created for transient and dc sweep
analyses.

.IC

.IC V(node1)=val1 [V(node2)=val2]...

OR

.IC node1 val1 [node2 val2]

This statement sets transient analysis initial conditions.

node1, node2 etc. Name of circuit node (or net) to which initial condition is to be
applied. See notes below.

val1, val2 etc. Voltage to be applied to net as initial condition.

If the UIC parameter is specified with the .TRAN statement no DC operating point will
be calculated so an initial condition will set the bias point in the same way as an IC=...
parameter on a BJT, capacitor, diode, JFET or MOSFET.
221

Simulator Reference Manual
If the UIC parameter is absent from the .TRAN statement then a DC operating point is
calculated before the transient analysis. In this case the net voltages specified on the
.IC statement are forced to the desired initial values during the DC operating point
solution. Once transient analysis begins this constraint is released. By default the
voltage force is effectively carried out via a 1 resistor. This can be changed with the
option setting ICRES. (page 237).

Alternative Initial Condition Implementations

An initial condition can also be specified using a voltage source with the DCOP
parameter specified. E.g.

VIC1 2 3 3.5 DCOP

Will force a voltage of 3.5 volts between nodes 2 and 3 during the DC operating point
solution. This has two advantages over .IC:

1. It has zero force resistance

2. It can be applied differentially

You can also use a capacitor with the BRANCH parameter set to 1. E.g.:

C1 2 3 10u BRANCH=1 IC=3.5

This will behave identically to the voltage source in the above example during the DC
operating point but during a subsequent small-signal or transient analysis will present a
10F capacitance to nodes 2 and 3.

See also: “Capacitor” on page 72 and “Voltage Source” on page 123.

.INC

.INC pathname

Insert the contents of the specified file.

pathname File system pathname for file to be included

The .INC statement is replaced by the specified file in its entirety as if was part of the
original file. .INC statements may also be nested i.e. there may be .INC statements
within the included file. Nesting may be to any level.

.KEEP

.KEEP signal_spec [signal_spec ...]

This statement tells the simulator what values to store during a simulation. By default
all signals at the top level and defined inside a hierarchical subcircuit are saved. .KEEP
may be used in conjunction with some .OPTIONS settings to increase or reduce the
data saved.

signal_spec /TOP | /SUBS | /NOV | /NOI | /NODIG | /INTERNAL | *V |
222

Chapter 6 Command Reference
*I | *D | **V | **I | **D | subref.*V | subref.*I | subref.*D |
subref.**V | subref.**I | subref.**D | ^wildcard_filter |
signal_name

subref Sub-circuit reference

/NOV Don't store top level (i.e. not in a subcircuit) voltages.
Equivalent to “.OPTIONS KeepNov”

/NOI Don't store top level currents. Equivalent to “.OPTIONS
KeepNoi”

/NODIG Don't store top level digital data. Equivalent to “.OPTIONS
KeepNod”

/SUBS Store all subcircuit data. Equivalent to “.OPTIONS KeepAll”

/TOP Overrides /subs. This is to inhibit storing signals in child
schematics in hierarchical designs. Equivalent to “.OPTIONS
KeepTop”

/INTERNAL Save all internal device values. Some devices have internal
nodes or sources. For example the bipolar transistor has internal
nodes to implement terminal resistance. These internal values
are not usually saved but may be by specifying /INTERNAL.
Equivalent to “.OPTIONS KeepInternal”

^wildcard_filter General specification that selects values to store based on their
name alone. Would usually use one of the special characters '*'
and '?'. '*' means ‘match one or more characters’ while '?' means
‘match a single character’. Some examples:

* matches anything

X1.* matches any signal name that starts with the
three letters: X1.

X?.* matches any name that starts with an X and
with a '.' for the third letter.

*.q10#c matches any name ending with q10#c.

*V Store all top level voltages. This is actually implicit and need
not be specified at the top level of the netlist. It can be usefully
used in sub-circuit definitions - see notes.

*I Store all top level currents. This is actually implicit and need not
be specified at the top level of the netlist. It can be usefully used
in sub-circuit definitions - see notes.

*D Store all top level digital data. This is actually implicit and need
not be specified at the top level of the netlist. It can be usefully
used in sub-circuit definitions - see notes.

**V Store all voltages including those inside sub-circuits descending
to all levels

**I Store all currents including those inside sub-circuits descending
to all levels
223

Simulator Reference Manual
**D Store all digital data including those inside sub-circuits
descending to all levels

subref.*V Store all voltages within sub-circuit subref excluding voltages
within children of subref.

subref.*I Store all currents within sub-circuit subref excluding currents
within children of subref.

subref.*D Store all digital data within sub-circuit subref excluding digital
data within children of subref.

subref.**V Store all voltages within sub-circuit subref including voltages
within children of subref descending to all levels.

subref.*I Store all currents within sub-circuit subref including currents
within children of subref descending to all levels.

subref.*D Store all digital data within sub-circuit subref including digital
data within children of subref descending to all levels.

signal_name Explicit voltage or current.

Option Settings

A number of option settings are available to control data output. These can be used in
conjunction with .KEEP statements to define what data is saved. The Option settings
are defined in the table below:

Option Name Description

KeepNone No data is saved except signals explicitly defined
using .KEEP or .GRAPH. Takes precedence over all
other keep options

KeepNov No voltages will be saved except signals explicitly
defined using .KEEP or .GRAPH. Takes precedence
over other options except KeepNone

KeepNoi No currents will be saved except signals explicitly
defined using .KEEP or .GRAPH. Takes precedence
over other options except KeepNone

KeepNod No digital signals will be saved except signals
explicitly defined using .KEEP or .GRAPH. Takes
precedence over other options except KeepNone

KeepAll All data saved including data inside subcircuits. Does
not enable saving of internal data (use KeepInternal)
or semiconductor AC currents (use KeepAllAci)

KeepTop Disables saving of subcircuit signals
224

Chapter 6 Command Reference
Examples

Default with no Keep options is to save all top level data and all signals inside
hierarchical subcircuits. Data inside non-hierarchical subcircuits are not saved.

Don’t save any data except signals defined in .KEEP or .GRAPH statements:

.OPTIONS KeepNone

Save all data except device internals and semiconductor currents in AC analyses.
Includes data inside subcircuits and hierarchies:

.OPTIONS KeepAll

Save everything including device internals and semiconductor currents in AC
analyses:

.OPTIONS KeepAll KeepAllAci KeepInternal

Don’t save currents:

.OPTIONS KeepNoi

Save signals in the top level and the first level in the hierarchy:

.OPTIONS KeepSubCktDepth=1

Save about 20% of all data:

.OPTIONS KeepQuotaFactor=0.2

KeepAllAci Save currents in semiconductor devices for AC
analysis

KeepInternal Save device internal signals

KeepSubcktDepth Limits saving of data in subcircuits to the specified
level. E.g. KeepSubcktDepth=2 will save data in top
level, first level subcircuits and second level
subcircuits

KeepQuotaFactor Number between 0.0 and 1.0 restricts data output
following precedence rules. 0.0 will save no data
whereas 1.0 will save all data as defined by other
options. KeepQuotaFactor is applied after all other
keep options. Note that the factor is an estimate.

Option Name Description
225

Simulator Reference Manual
Store only voltages and currents in sub-circuit X1 excluding descendants.

.OPTIONS KeepNone

.KEEP X1.*v X1.*i

Store only voltages and currents in sub-circuit X1 including descendants.

.OPTIONS KeepNone

.KEEP X1.**v X1.**i

Store voltages within U3.U12 along with VOUT and VIN

.OPTIONS KeepNone

.KEEP U3.U12.*v VOUT VIN

Store all top level voltages and currents in U7

.OPTIONS KeepNone

.KEEP U7.*i

Notes

.KEEP may be used inside a sub-circuit definition in which case .KEEP operates at a
local level. For example .KEEP *v inside a sub-circuit definition specifies that all
voltages within that subcircuit (for all instances) will be saved. .KEEP **v does the
same but also includes any descendant sub-circuit instances.

SIMetrix uses subcircuits to implement hierarchical schematics. Subcircuits are also
used in other ways, for example to implement device macro models. SIMetrix is able
to distinguish between subcircuits used for hierarchies and other subcircuits. It does
this by placing a comment line below the .SUBCKT line as shown below:

.subckt fastamp VOUTP VN VINP VP VINN VOUTN
*#hierarchy
...
.ends

The comment line *#hierarchy marks the subcircuit as part of the schematic hierarchy.
The schematic editor’s netlist generator automatically adds *#hierarchy lines as
appropriate.

.LOAD

.LOAD file [instparams=parameter_list] [nicenames=0|1]
[goiters=goiters] [ctparams=ctparams] [suffix=suffix]
[warn=warnlevel]

Loads a device file. This may be a Verilog-A file or a compiled binary (.sxdev file).
226

Chapter 6 Command Reference
file Specifies either a Verilog-A file or a .SXDEV file. If the
extension is .SXDEV, no compilation will be performed and the
specified file will be loaded directly. The remaining options will
not be recognised in this case. Otherwise the file will be
assumed to be a Verilog-A file and will passed to the Verilog-A
compiler. This will compile the file to a .sxdev binary and then
load it

parameter_list A list of parameter name separated by commas. There should be
no spaces in this list. Each parameter in this list will be defined
as an instance parameter. Refer to the Verilog-A User Manual
for further details

goiters Specifies the number of global optimiser iterations. The default
is 3. A higher number may improve the execution speed of the
code at the expense of a longer compilation time. In practice this
will only have a noticeable effect on very large Verilog-A files.
Setting the value to zero will disable the global optimiser. This
is likely to slow execution speed a little. The global optimiser is
an algorithm that cleans up redundant statements in the ‘C’ file.

ctparams defines ‘Compile-time parameters’ and is a list of comma-
separated parameter name/value pairs in the form name=value.
Any parameters listed will be substituted with the constant value
defined during compilation as if it were entered as a literal
constant in the Verilog-A code. This feature is especially useful
for items such as array sizes and vectored port sizes. A
considerably more efficient result will be produced if the values
of such items are known at compile time.

warnlevel sets a filter for warning messages. If set to zero, no warnings
will be displayed. If set to 2, all warnings will be displayed. The
default is 1 which will cause most warnings to be displayed but
will omit those that are less serious.

.LIB

There are two forms of .LIB and the behaviour of each is completely different from
each other. The SIMetrix Native Form specifies a file or group of files to be searched
for any model or subcircuit that has not yet been found. The HSPICE version is a
selective version of .INC but unlike .INC it doesn't include the whole file, just a
specified portion of it.

SIMetrix Native Form

.LIB pathname

pathname File system path name specifying a single file or, by using a
wildcard (* or ?), a group of files. If the path name contains
spaces, it must be enclosed in quotation marks (").

The SIMetrix form of this statement specifies a pathname to be searched for model and
subcircuit libraries. Any number of .LIB statements may be specified and wildcards
(i.e. * and ?) may be used.
227

Simulator Reference Manual
If a model or subcircuit is called up by a device line but that definition was not present
in the netlist, SIMetrix will search for it in files specified using the .LIB statement.

SIMetrix will also search for definitions for unresolved parameters specified in
expressions. These are defined using .PARAM (see page 251).

Example

The following statement instructs the simulator to search all files with the .mod
extension in c:\Spice Model Library\ for any required subcircuits or device models.

.lib "c:\Spice Model Library*.mod"

HSPICE Form

.LIB 'filename' entryname

filename File system path name specifying a single file.

entryname Name used to identify sections within filename

When HSPICE the form of .LIB is encountered, SIMetrix will search the file
specified by filename for a section enclosed by:

.LIB entryname

and

.ENDL

.LIB calls may be nested as long as they are not recurrent. That is a .LIB call within a

.LIB .ENDL block may not call itself but it may call another block within the same
file. (HSPICE itself does not permit this).

This form of .LIB is commonly used in model files issued by semiconductor
fabrication plants which tend to be designed for use with HSPICE. The entry name
parameter is used for process corner and skew selection. Typically the model file
would have entries for - say - slow, nominal and fast models. These would reside under
entry names of, perhaps, SS, NOM, and FF respectively. You can very rapidly switch
between these model sets simply by changing the entry name on the .LIB line e.g.

.LIB 'c:\models\fab1\process_a\top.mod' NOM

would select the nominal models. Changing to:

.LIB 'c:\models\fab1\process_a\top.mod' SS

would switch to the slow models.

.MODEL

.MODEL modelname modeltype (param1=val1 [param2=val2]...)
228

Chapter 6 Command Reference
This statement specifies a set of model parameters that are used by one or more
devices. .model statements often reside in model libraries.

modelname Model name. Any text string to uniquely identify model. Must
begin with a letter but may contain any legal ASCII character
other than a space and period '.' .

modeltype Model type. See tables below for possible values

param1, param2 etc. Parameter name.
Valid values depend on the model type.
(See “Simulator Devices” on page 29)

val1, val2 etc. Parameter value.

XSPICE Model Types

Model name Description

ad_converter analog-to-digital converter

adc_bridge analog-to-digital interface bridge

adc_schmitt analog-to-digital schmitt trigger

cm_cap Capacitor with voltage initial condition

cm_ind Inductor with current initial condition

d_and digital n-input and gate

d_buffer digital one-bit-wide buffer

d_cap Digital capacitor

d_dff digital d-type flip flop

d_dlatch digital d-type latch

d_fdiv digital frequency divider

d_init Digital initial condition

d_inverter digital one-bit-wide inverter

d_jkff digital jk-type flip flop

d_logic_block arbitrary logic block

d_nand digital n-input nand gate

d_nor digital n-input nor gate

d_open_c digital one-bit-wide open-collector
buffer

d_open_e digital one-bit-wide open-emitter buffer

d_or digital n-input or gate

d_osc controlled digital oscillator
229

Simulator Reference Manual
SPICE Model Types

d_pulldown digital pulldown resistor

d_pullup digital pullup resistor

d_pulse digital pulse

d_ram digital random-access memory

d_res Digital resistor

d_source digital signal source

d_srff digital set-reset flip flop

d_srlatch digital sr-type latch

d_state digital state machine

d_tff digital toggle flip flop

d_tristate digital one-bit-wide tristate buffer

d_xnor digital n-input xnor gate

d_xor digital n-input xor gate

da_converter digital-to-analog converter

dac_bridge digital-to-analog interface bridge

s_xfer s-domain transfer function block

Model name Description

ACTABLE AC Table Lookup (including S-
Parameters) (page 53)

C, CAP Capacitor (page 72)

CORE Inductor (Saturable) (page 85)

CORENH Inductor (Saturable) (page 85)

D Diode - Level 1 and Level 3 (page 77)

HICUM_211 Bipolar Junction Transistor (HICUM)
(page 72)

LPNP Lateral PNP Bipolar Junction
Transistor (SPICE Gummel Poon)
(page 58)

LTRA Lossy Transmission Line (page 92)

NIGBT Insulated Gate Bipolar Transistor
(page 88)

NJF N-channel Junction FET (page 89)

Model name Description
230

Chapter 6 Command Reference
Safe Operating Area (SOA) Limits

It is possible to define SOA limits within the .MODEL statement. To do this, add one
or more parameters in the following format:

LIMIT(name)=(min, max, xwindow)

name Name of quantity to test. See format for access variables useable
when MODEL is specified for a .SETSOA statement. This is
described in section: “.SETSOA” on page 256. E.g. use
‘LIMIT(vcb)’ to specify the limits for the collector-base voltage
of a BJT.

min, max As described in “.SETSOA” on page 256

xwindow As described in “.SETSOA” on page 256

Example

The following is a model for a 1N5404 diode.

NMF N-channel GaAsFET (page 83)

NMOS N-channel MOSFET (page 93)
Also many other types. See table of
contents

NPN NPN Bipolar Junction Transistor
(SPICE Gummel Poon) (page 58)
Also VBIC, Mextram and Hicum
devices

PJF P-channel Junction FET (page 89)

PMF P-channel GaAsFET (page 83)

PMOS P-channel MOSFET (page 93)
Also many other types. See table of
contents

PNP PNP Bipolar Junction Transistor
(SPICE Gummel Poon) (page 58)

PSP102 PSP MOSFET (page 105)

R, RES Resistor (page 107)

R3_CMC CMC Resistor (page 113)

SRDIO Diode - Soft Recovery (page 81)

SW, VSWITCH Voltage Controlled Switch (page 122)

VSXA Verilog-HDL Interface (VSXA)
(page 132)

Model name Description
231

Simulator Reference Manual
.MODEL D1n5404 D(Is=15.48f Rs=7.932m Ikf=0 N=1 Xti=3

+ Eg=1.11 Cjo=150p M=.3 Vj=.75 Fc=.5

+ Isr=120n Nr=2 Bv=525 Ibv=100u)

.NOCONV

.NOCONV V(node1)=val1 [V(node2)=val2]...

Disables convergence testing for the specified nodes.

.NODESET

.NODESET V(node1)=val1 [V(node2)=val2]...

OR
.NODESET node1 val1 [node2 val2]

This statement sets an initial guess voltage at the specified node for the dc operating
point solution.

node1, node2 etc. Name of circuit node (or net) to which nodeset is to be applied.
See notes below.

val1, val2 etc. Nodeset voltage to be applied.

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage
is applied via a 1 Ohm (by default but can be changed using NODESETRES option -
see page 237) resistor and the solution is completed to convergence (by any of the
methods). The nodeset is then released and the solution repeated. If the nodeset voltage
is close to the actual solution the convergence of the second solution should be rapid.

Nodesets can be used to force a particular solution for circuits that have more than one
stable state. Consider the following circuit:
232

Chapter 6 Command Reference
A nodeset has been applied to the collector of Q1. This has forced Q1 to be on and Q2
to be off. If the nodeset were absent the solution would actually leave both Q1 and Q2
partially on. In real life this would not be stable but it is numerically accurate.

The other application of nodesets is to help convergence for the DC bias point. With
SIMetrix, it is rarely necessary to use nodeset's to find the DC solution of a circuit.
They can, however, be useful for speeding up the operating point analysis for circuits
that have already been solved. You may wish to do this for a Monte-Carlo analysis, for
example. SIMetrix features a method of creating nodesets for this purpose using the
SaveRhs command. See “Using Nodesets” on page 286.

Nodeset's should not be confused with initial conditions. (see “.IC” on page 221).
Initial conditions tie a node to a particular voltage and keep it there throughout the DC
operating point analysis. Nodesets merely suggest a possible solution but do not force
it.

.NOISE

.NOISE inner_sweep_spec [V] pos_node [VN] neg_node
+ [[INSRC] in_source]
+ [F frequency] [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice Compatible
.NOISE V(pos_node [, neg_out_node]) in_source
 + DEC|LIN|OCT num_points start stop interval

0.0646829

100k
R4

4.60195

5V
V1

1K
R2

Q2
Q2N2222

Q1
Q2N2222

1K
R1

100k
R3

10k

R5

10k

R6 .nodeset
0

233

Simulator Reference Manual
This statement instructs the simulator to perform a small signal noise analysis.

pos_node Node on circuit at which noise is measured.

neg_node Node to which outputnode is referenced. Defaults to ground if
omitted.

in_source Input source (i.e. voltage or current) to which the input noise
measurement is referred.

inner_sweep_spec See “General Sweep Specification” on page 205 for syntax.
Defines sweep mode. FREQ keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this
specification. See “General Sweep Specification” on page 205
for syntax.

LIN Analysis points are linearly spaced.

DEC Analysis points are logarithmically spaced in decades

OCT Analysis points are logarithmically spaced in octaves

num_points LIN: Total number of points
DEC: Number of points per decade
OCT: Number of points per octave

start Start frequency

stop Stop frequency

interval Currently does nothing. Provided for backward compatibility.

runname If specified, the value for runname will be passed to the
simulation data group as a string variable with name
UserRunName. This may be used to identify which analysis
generated the data which is useful when running netlists with
multiple analyses defined

Notes

During noise analysis the simulator calculates the total noise measured between
pos_node and neg_node at each frequency point. It also calculates and outputs this
noise referred back to an input specified by in_source. As for all other analysis modes
a DC operating point analysis is carried out first but, unlike AC analysis, the results of
this analysis are not made available. The simulator outputs vectors covering the
contribution from each noise generating device to the total output noise. The names of
these vectors begin with the component reference of the device followed by a suffix to
indicate the source of the noise within the device. A listing of the suffixes is given
below. It is important to note that it is not the noise being generated by each device that
is output but the proportion of that noise that is propagated to the output.

It is not necessary to specify a separate AC analysis alongside the noise analysis as it is
with SPICE2 and commercial derivatives of SPICE2.

The magnitude of any AC independent voltage or current source on the circuit has no
effect on the results of a noise analysis. Unlike SPICE and earlier versions of SIMetrix,
it is not necessary to specify an AC parameter for the source used for the noise input
234

Chapter 6 Command Reference
source. For the first form shown above, the input source is in fact optional. If it is
omitted the input referred noise will not be calculated.

All noise results are in V/Hz except input noise referred back to a current source
which is in A/Hz. In standard SPICE3 the noise values produced for MOS2 and
BSIM3 devices are in V2/Hz. For consistency, these have now been changed to V/Hz.
The original SPICE3 behaviour can be restored by setting the simulator option
OldMosNoise (see “.OPTIONS” on page 237)

Device vector name suffixes

Creating Noise Info File

Noise analysis generates vectors in the same way as all other swept analyses.
Individual vectors may also be tabulated in the list file using the .PRINT statement.

A noise output file may also be created from the front end. Select the command shell
menu Graphs and Data | Create Noise Output File to create a text file with a summary
of noise results. Included is a list of the integrated noise output for every device listed
in order of magnitude. Select Graphs and Data | View Noise Output File to view the
file. Note that this is a front end feature and is not implemented by the simulator.

Device Type Suffix and Description

BJT #rc Noise due to collector resistance
#rb Noise due to base resistance
#re Noise due to emitter resistance
#ic Shot noise in collector
#ib Shot noise in base
#1overf Flicker (1/f) noise
no suffix Total transistor noise

Diode #rs Noise due to series resistance
#id Shot noise
#1overf Flicker (1/f) noise
no suffix Total diode noise

JFET and MOSFETs level 1-3
and BSIM3

#rd Noise due to drain resistance
#rs Noise due to source resistance
#id Shot noise in drain
#1overf Flicker (1/f) noise
no suffix Total FET noise

NXP MOS9 (all types see
“NXP Compact Models” on
page 138)

#Sfl Flicker (1/f) noise
#Sth Drain thermal noise
#Sig Gate thermal noise
#Sigth Gate-drain correlated thermal noise
no suffix Total FET noise

Resistor #therm Resistor thermal noise
#1overf Flicker (1/f) noise
#noise Total resistor noise

Voltage controlled switch no suffix Total switch noise
235

Simulator Reference Manual
Examples

Run noise analysis from 100Hz to 1MHz with 25 points per decade. Calculate noise at
node named vout and noise referred back to voltage source vin:

.NOISE V(vout) vin dec 25 100 1meg

Decade sweep resistor RSource from 100 to 10K with 25 points per decade. Frequency
= 1kHz

.NOISE DEVICE RSource DEC 25 100 10k F=1K

.OP

.OP

This statement instructs the simulator to perform a DC operating point analysis. Note
that a DC operating point analysis is carried out automatically for transient (unless the
UIC parameter is specified), AC, DC, transfer function and noise analyses.

DC operating point analysis attempts to find a stable bias point for the circuit. It does
this by first applying an initial guess and then uses an iterative algorithm to converge
on a solution. If it fails to find a solution by this method the simulator then attempts
three further strategies.

For the first, a method known as ‘source stepping’ is employed. For this all voltage and
current sources in the circuit are initially set to near zero and the solution found. The
sources are then gradually increased until they reach their final value.

If this approach fails a second strategy ‘GMIN stepping’ is invoked. This conditions
the solution matrix by increasing the diagonal term such that it is dominant. If large
enough, convergence is virtually guaranteed. If successful then the diagonal term is
reduced and a further solution sought using the previous solution as a starting point.
This procedure is repeated until the diagonal term is returned to its correct value.
Increasing the diagonal term is in a way similar, but by no means identical, to placing a
small resistance at each node of the circuit.

If source stepping fails a final strategy, ‘pseudo transient analysis’ is invoked. This is
the most powerful technique employed and nearly always succeeds. However, it is also
the slowest which is why it is left until last. For more information on DC convergence
see “Convergence, Accuracy and Performance” on page 282.

If the final approach fails then the analysis will abort.

IMPORTANT: It is not necessary to include .OP if other analyses are specified. All
other analysis modes will perform an operating point anyway so including .OP will
simply cause it to be done twice. However, with .NOISE, .TF, .SENS and .PZ the
results of the operating point analysis are not output. If the bias point of the circuit is
required when running one of these analysis modes, a .OP will be needed.
236

Chapter 6 Command Reference
‘OFF’ Parameters

Some semiconductor devices feature the device parameter OFF. If there are devices in
the circuit which specify this parameter, the bias point solution is found in two stages.
In stage 1 the devices with OFF specified are treated as if their output terminals are
open circuit and the operating point algorithm completes to convergence. In stage 2,
The OFF state is then released and the solution restarted but initialised with the results
of stage 1.

The result of this procedure is that OFF devices that are part of latching circuits are
induced to be in the OFF state. Note that the OFF parameter only affects circuits that
have more than one possible DC solution such as bistables. If the OFF parameter is
specified in - say - an amplifier circuit - with a unique solution, the final result will be
the same. It will just take a little longer to arrive at it.

Nodesets

Nodesets work in a similar way to the OFF parameter in that the solution is found in
two stages. In the first the nodeset is applied and the solution found. It is then released
and convergence continues. Nodeset are an aid to convergence and, like the OFF
parameter, can coerce a particular solution if there is more than 1 stable state. See
“.NODESET” on page 232 for details

Initial Conditions

Initial conditions force a particular voltage at a circuit node during bias point solution.
The force is released for any subsequent analysis. See “.IC” on page 221 for more
details.

Operating Point Output Info

During the operating point analysis, operating point values of every device in the
circuit are output to the list file (see page 24). This information is not usually output for
other analysis modes unless explicitly requested. The output of operating point
information is controlled by three simulator options:

NOOPINFO If set, the operating point info file is not created for .OP analysis

OPINFO If set, the operating point info file is created for other analyses
as well as .OP. (Does not apply to .SENS - operating point
information is not available for this mode at all)

OPINFOFILE Sets name of file to receive operating point info. Outputs to list
file if this option is not specified.

.OPTIONS

.OPTIONS [opt1 [=val1]] ...

This statement allows the setting of various options specific to the simulator.

opt1 Option name. Must be one specified in list below.

val1 Option value. Note, boolean options do not have a value. They
237

Simulator Reference Manual
are assigned “true” if the name is present and “false” if not

List of simulator options

Option name Default
value

Description

ABSTOL 1p Units = A
The absolute current error tolerance. It
is sometimes desirable to increase this
for circuits that carry large currents
(>1A) to speed the solution and aid
convergence.

ACCT false Full simulation timing statistics are
generated if this is enabled.

ALLACI false Instructs simulator to save all device
currents in an AC analysis. Usually,
only currents for simple devices are
evaluated and stored. Equivalent to
“.KEEP /allaci”, but unlike .KEEP,
.OPTION values can be defined on the
Run command line.

ANYVERSION false If true, BSIM3 and BSIM4 models will
be unconditionally accepted even if an
invalid version parameter is supplied.

BINDIAG false If enabled, a report about selection of
binned models will be output to the list
file. See “Model Binning” on page 47

BINONTOTALWIDTH false For backward compatibility affecting
BSIM4 models. Multi-fingered BSIM4
devices are binned according to width
per finger. SIMetrix versions 5.3 and
earlier binned according to total width.
Set this option for version 5.3
behaviour.

CHGTOL 1e-14 Units = Coulombs
The absolute charge tolerance.

DCOPSEQUENCE gmin|
source|
pta

Operating point strategy sequence
order. See “Controlling DC Method
Sequence” on page 291 for details

DEFAD 0 Unit = m2

Default value for MOSFET AD device
parameter. Applies to levels 1-3 and
level 49/53. Does not apply to level 8
or NXP MOS9 devices

DEFAS 0 Unit = m2

As DEFAD but for AS parameter
238

Chapter 6 Command Reference
DEFL 100 Unit = metres
As DEFAD but for L parameter

DEFNRD 0 As DEFAD but for NRD parameter

DEFNRS 0 As DEFAD but for NRS parameter

DEFPD 0 Unit = metres
As DEFAD but for PD parameter

DEFPS 0 Unit = metres
As DEFAD but for PS parameter

DEFW 100 Unit = metres
As DEFAD but for W parameter

DEVACCT false If true, the simulator will measure load
times for each device type during a
simulator run. This information can be
obtained using the GetDeviceStats()
script function.

DIGMINTIME 1pS Unit = Seconds
Minimum digital resolution. Not yet
fully supported

DISABLESUBCKTMULTIPLIER false If true, the subcircuit multiplier
parameter, M, will be disabled. See
“Subcircuit Instance” on page 120

DISCONTINUOUSIFSLEWRATE Default=0. Sets slew rate of
discontinuous conditional expressions.
See “IF() Function” on page 38 for
more information

EXPAND false The netlist with subcircuits expanded
is output to the list file if this is
specified.

EXPANDFILE Only applies if EXPAND also
specified. Specifies a file instead of the
list file to receive the expanded netlist

FASTPOINTTOL 1.0 Value for POINTTOL used during ‘Fast
transient start’. See POINTTOL below.

FASTRELTOL 0.001 Value for RELTOL used during ‘Fast
transient start’

FLUXTOL 1e-11 Unit = V.secs
The absolute flux tolerance for
inductors.

Option name Default
value

Description
239

Simulator Reference Manual
FORCETRANOPGROUP false Forces a separate data group to be
created for transient analysis
operating point data. This happens
anyway if tstart>0. Use this option
when simulating a large circuit and
you wish to make extensive use of
schematic bias annotation. See User’s
Manual Chapter 9 “Viewing DC
Operating Point Results” for more
details

FULLEVENTREPORT false If true, the simulator will save all event
information. When false, only major
events are recorded. Events can be
obtained from the
GetSimulatorEvents() script function
and can be useful for diagnosing failed
runs.

GMIN 1e-12 Unit = Siemens (mhos)
The minimum conductance allowed by
the program. This has the effect of
placing a resistor = 1/GMIN in parallel
with every branch of the circuit.

GMINMAXITERS 1000 Maximum total number of iterations
allowed for GMIN stepping operating
point algorithm. See “Source and
GMIN Stepping” on page 283 for
details.

GMINMULT 10 During GMIN stepping the value of
GMIN is multiplied by a variable factor
at each step. This option is the starting
and maximum value of that factor.

GMINSTEPITERLIMIT 20 Iteration limit for each step in GMIN
stepping. Increase to 100 for
compatibility with SIMetrix 2.0x and
earlier.

ICRES 1 Unit = ICRES
Initial condition resistive force. See
“.IC” on page 221 for details

ITL1 100 DC iteration limit used for initial DC
operating point.

ITL2 50 DC iteration limit used for swept and
multi-step analyses.

Option name Default
value

Description
240

Chapter 6 Command Reference
ITL4 10 Normal transient timepoint iteration
limit. The behaviour of this parameter
is slightly different in SIMetrix than
other SPICE based simulators. See
“Convergence, Accuracy and
Performance” on page 282

ITL7 40 Upper transient timepoint iteration
limit. This is specific to SIMetrix.

KEEPNOV false Disables saving voltage data

KEEPNOI false Disables saving current data

KEEPNOD false Disables saving digital data

KEPPALLACI false Enables saving current data for
semiconductor devices in AC analysis

KEEPINTERNAL false Enables saving device internal data.
(Signals internal to primitive devices,
not subcircuits)

KEEPTOP false Save only the data at the top level.
This is default behaviour but this
option overrides KEEPALL if this is
also specified

KEEPNONE false Disables saving all data except items
explicitly requested using .GRAPH or
.KEEP

KEEPALL false Keep data inside all subcircuits

KEEPSUBCKTDEPTH -1 Keep data in subcircuits to defined
depth

KEEPQUOTAFACTOR 1.0 Reduces data saved to a proportion of
the total specified by eliminating on a
priority basis

LOGICHIGH 2.2 Unit = Volts
Upper threshold for logic inputs. Other
comments as for LogicThreshHigh

LOGICLOW 2.1 Unit = Volts
Lower threshold for logic inputs. Other
comments as for LogicThreshHigh

LOGICTHRESHHIGH 5 Unit = Volts
Output voltage for logic high level.
Used for & | and ~ operators for
arbitrary source. See “Arbitrary
Source” on page 54 for more details

Option name Default
value

Description
241

Simulator Reference Manual
LOGICTHRESHLOW 0 Unit = Volts
Output voltage for logic low level.
Other comments as for
LogicThreshHigh

LOGPARAMEXPRESSIONS false If true, a log of parameter expressions
in use will be output to the list file

MATCHEDSUBCIRCUITS false If set, components within subcircuits
are treated as matched for Monte
Carlo analysis. See “Monte Carlo
Analysis” on page 270 .

MAXEVTITER 0 (sets
internal
default)

Maximum number of event driven
passes allowed at each step. It is not
usually necessary to change this
value.

MAXOPALTER 0 (sets
internal
default)

Maximum number of alternations
between analog and event-driven
iterations. It is not usually necessary to
change this value

MAXORD 2 Maximum integration order. For
METHOD=TRAP maximum value is 2.
For METHOD=GEAR maximum value
is 6. There is rarely any reason to
change this value.

MAXVDELTAABS 0.5 with MAXVDELTAREL, sets a limit on
the amount of change per timestep for
each node. Inactive if
MAXVDELTAREL less than or equal to
zero. See “Voltage Delta Limit” on
page 294 for further details

MAXVDELTAREL 0.0 See MAXVDELTAABS above.

MC_ABSOLUTE_RECT false If set Monte Carlo distribution will be
rectangular for absolute tolerances.
Otherwise the distribution will be
Gaussian.

MC_MATCH_RECT false If set Monte Carlo distribution will be
rectangular for matched tolerances.
Otherwise the distribution will be
Gaussian.

MCLOGFILE mclog.txt File name to receive Monte Carlo log.
See “Log File” on page 272

MCUSELINEARDISTRIBUTION false Use a linear distribution for default
tolerances with Monte Carlo analysis.
See “TOL, MATCH and LOT Device
Parameters” on page 279

Option name Default
value

Description
242

Chapter 6 Command Reference
METHOD trap Numerical integration method. Either
TRAP (default) or GEAR". More info:
See “Integration Methods - METHOD
option” on page 296

MINBREAK See notes Unit = Seconds
Minimum time between transient
analysis breakpoints. A breakpoint is a
point in time when an analysis is
forced regardless of whether it is
required by the timestep selection
algorithm. Typically they are set at
known turning points such as the start
and end of a rising pulse. If two
breakpoints are closer than
MINBREAK they are merged into one.
(there are exceptions to this e.g if the
two breakpoints were generated by a
single rising edge). Increasing
MINBREAK can sometimes help
convergence and simulation speed.
The default value is
MINTIMESTEP*100. (See below for
MINTIMESTEP)

MINGMINMULTIPLIER 1.000001 In GMIN stepping, the step size is
multiplied by variable factor at each
step. This step is reduced if
convergence fails. If it is reduced
below this value, the GMIN algorithm
will abort and the next DC operating
point strategy will be invoked.

MINTIMESTEP 1e-9 * Max
time step

Unit = Seconds
Minimum transient time step.
Simulation will abort if it reaches this
value. See “.TRAN” on page 265 for
value of Max time step

MOSGMIN GMIN Value of GMIN used between drain
and source of MOSFETs. See
“MOSFET GMIN Implementation” on
page 104

MPNUMTHREADS 0 Sets number of threads (i.e. cores) to
be used for simulation. The simulator
will choose if set to zero (default
value). See “Using Multiple Cores for
Single Step Runs” on page 298

Option name Default
value

Description
243

Simulator Reference Manual
NEWGMIN false Changes the implementation of GMIN
for ‘old’ MOS devices i.e. LEVELs 1-3.
When this option is set, GMIN is
implemented as a conductance
between source and drain. Otherwise
two conductances are added between
drain and bulk and source and bulk.
See “MOSFET GMIN Implementation”
on page 104

NOCUR false Equivalent to “.KEEP /noi”. Inhibits the
saving of current data.

NODELIMIT 1e50 Unit = Volts
Maximum value allowed for circuit
node during iteration. If exceeded,
iteration will abort. (This does not
usually mean the analysis will abort).
Reducing this value can sometime
solve floating point exceptions or
unexplained singular matrices.

NODESETRES 1.0 Unit = Ohms
Driving resistance of nodeset force.
See “.NODESET” on page 232 for
details

NOECHO false Inhibits display of netlist in list file

NOMCLOG false If specified, no Monte Carlo log file will
be created. See“Log File” on page 272
for details

NOMOD false If specified, no model parameter report
will be output to the list file.

NOMOS9GATENOISE false If specified, the drain induced gate
noise model for MOS9 devices will be
disabled. See “NXP Compact Models”
on page 138.

NOOPALTER false If specified, only a single pass will be
made to resolve the operating point for
event driven devices.

NOOPINFO false Switches off creation of operating
point info file for .OP analyses. See
“.OP” on page 236 for more details

NOOPITER false Use GMIN stepping for DC operating
point analysis first. (i.e skip normal
iteration method)

Option name Default
value

Description
244

Chapter 6 Command Reference
NORAW false Output transient analysis values at
intervals of tstep only. See “.TRAN” on
page 265

NOSENSFILE false Switches off creation of sensitivity
analysis data file.

NoStopOnUnknownParam See
description

Specifies action to be taken in the
event of an unknown parameter being
encountered in a .MODEL statement.
Choices are:

TRUE: No action taken, simulation
continues normally
FALSE: An error will be raised and the
simulation will abort
WARN: A warning will be displayed
but the simulation will continue

The default value is set by a front end
“Set” variable of the same name. This
can be set using the menu “File |
Options | General...” under “Model
Library” tab. The “Set” variable default
is WARN.

If running in non-GUI mode the default
will be controlled by the entry in the
config file. See “Global Settings” on
page 19

NOWARNINGS false Inhibits simulation warnings

NOVOLT false Equivalent to “.KEEP /nov”. Inhibits
the saving of voltage data.

NUMDGT 10 Column width used for display of all
values in list file and Monte Carlo log
file. Minimum value is 8, maximum is
30. Note this value is column width not
the number of significant digits.

OLDLIMIT false If set SPICE 2 MOS limiting algorithm
is used. Affects MOS Level 1,2 and 3
as well as EKV devices

OLDMOSGMIN 0 Value of conductance placed between
drain-bulk and source-bulk for BSIM3,
BSIM4 and EKV devices. Also applies
to LEVEL 1-3 and LEVEL 17
MOSFETs if NEWGMIN parameter is
set. See “MOSFET GMIN
Implementation” on page 104

Option name Default
value

Description
245

Simulator Reference Manual
OLDMOSNOISE false MOS2 and BSIM3 devices return
device noise in V2/Hz for SPICE3 and
earlier versions of SIMetrix whereas
other device's noise is returned in V/
Hz. From release 3 onwards all
devices return noise in V/Hz. Setting
this option restores to behaviour of
earlier versions.

OPINFO false If set DC operating point info file is
created for all analyses (except
.SENS). Normally it is created only for
.OP analyses.

OPINFOFILE false Specify name of operating point info
file. This is OP.TXT by default.

OPTIMISE 2 Controls expression optimiser. 0=off,
1=on for .FUNC defined expressions,
2=on always. See “Optimisation” on
page 43

PARAMLOG Given Control amount of detail for parameter
log in list file.
Choices:
None: no parameters listed
Brief: only parameters specified

using an expression are
listed

Given parameters explicitly
specified in the netlist are
listed

Full all parameters are listed

PIVREL 1e-3 Tolerance for matrix pivot selection.
This rarely needs to be altered.
Reducing to 1e-4 can sometimes
improve simulation speed a little but at
higher risk of convergence failure.
Setting this parameter to a high value
e.g, 0.99 can sometimes fix
convergence problems but may slow
down the simulation. Valid values lie
between 0 and 1.

Option name Default
value

Description
246

Chapter 6 Command Reference
PIVTOL 1e-13 Only effective when
SPSOLVER=KSPARSE

This affects the matrix solution and
rarely needs to be altered. It is the
absolute minimum value for a matrix
entry to be accepted as a pivot.
Unexplained singular matrix errors can
sometimes be overcome by lowering
this value. (But note that singular
matrix errors are usually caused by
errors in the circuit such as floating
nodes or shorted voltage sources).

POINTTOL 0.001 A factor used to control the extent to
which the maximum value attained by
a signal is used to control its tolerance.
This is new from release 4; set it to
zero for pre release 4 behaviour.
Increasing this value will speed up the
simulation at the expense of precision.
See “Accuracy and Integration
Methods” on page 292

PTAACCEPTAT 0 If > 0, specifies a time when pseudo
transient analysis results will be
accepted unconditionally. This is
useful when a circuit comes close to
convergence during pseudo transient,
but doesn’t quite make it due to an
oscillation. See “Pseudo Transient
Analysis” on page 284

PTACONFIG 0 Integer from 0 to 15 sets internal
parameters for pseudo transient
algorithm used to find DC operating
point. See “Pseudo Transient
Analysis” on page 284

PTAMAXITERS 20000 Maximum total number of iterations
allowed for pseudo transient algorithm
used to find DC operating point. See
“Pseudo Transient Analysis” on
page 284

PTAOUTPUTVECS false If specified, signal vectors will be
output during pseudo transient
analysis. This may be used to
diagnose a failure. See “Pseudo
Transient Analysis” on page 284

Option name Default
value

Description
247

Simulator Reference Manual
RELTOL 0.001 This is the relative tolerance that must
be met for each analysis point.
Reducing this number will improve
accuracy at the expense of simulation
time or/and convergence reliability.
Simulation results can not be relied
upon if its value is increased beyond
0.01. A more detailed discussion is
given in “Accuracy and Integration
Methods” on page 292

RESTHRESH 1e-6 Resistance threshold. If a resistor is
specified that is below this value,
SIMetrix will use a voltage based
implementation (V=IR) instead of the
conventional current based
implementation (V=I/R). Voltage based
resistors are slightly less efficient but
allow R=0 without numerical overflow

RSHUNT Infinite If specified a resistor of the specified
value is placed from every node to
ground. This can resolve problems
with floating nodes.

RTNSEED 0 Seed used for real time noise

SEED 0 Integer value. If non-zero will be used
to initialise random number generator
used for Monte Carlo analysis
distribution functions. See “Seeding
the Random Number Generator” on
page 273

SENSFILE SENS.TXT Specify name of sensitivity data file.

SNAPSHOTFILE Specifies file name used to save
snapshot data. Defaults to netlist
name with .sxsnp extension

SOADERATING 1.0 Scales min and max values used in
“.SETSOA” specification. This allows a
de-rating policy to be globally applied
to SOA limits.

SOAEND -1 Specifies end time point for SOA. Use
with SOASTART. -1 means end of
simulation

Option name Default
value

Description
248

Chapter 6 Command Reference
SOAMODE false Controls the Safe Operating Area
(SOA) test mode. See “.SETSOA” for
details on how to define a SOA test.

Can set to:

Off SOA testing is not enabled.
In this mode .SETSOA
statements will be read in
and any errors reported, but
no SOA testing will be
performed during the run.

Summary SOA testing enabled and
results given in summary
form with only the first
violation for each
expression given being
output.

Full SOA testing enabled with
full results given. Every
violation will be reported in
this mode.

SOAOUTPUT list Can be:

msg Results displayed in
command shell message
window, or console if run in
“non-GUI” mode

list Results output to list file
msg|list Results output to both list

file and command shell
message window

none Results not output to either
list file or message window.

Note that all results are always stored
for retrieval using the script function
GetSOAResults. So even if “none” is
specified the SOA data is always
available.

SOASTART 0.0 Specifies start time for SOA. Use with
SOAEND

SOAWRITEDEFS false If specified, SOA definitions are written
to the list file

Option name Default
value

Description
249

Simulator Reference Manual
SOURCEMAXITERS 1000 Maximum total number of iterations
permitted for source stepping
algorithm. Set to zero to disable limit

SPSOLVER KLU Can be KLU or KSPARSE. Sets
choice of matrix solver. See “Matrix
Solver” on page 299

TEMP 27 Unit = C
Operating temperature of circuit. Note
this value can be overridden locally for
some devices. You can also use
.TEMP for this.

TIMESTATS false Equivalent to ACCT

TLMINBREAK See note Minimum break point for transmission
lines. Works in the same way as
MINBREAK but only for break points
generated by lossless transmission
lines. Default = MINTIMESTEP * 5e-5

TNOM 27 Unit = C
Temperature at which model
parameters are defined. This can be
overridden in the model statement.

TRTOL 7 This only affects transient analysis. It
is a relative value that is used to
determine an acceptable value for the
‘local truncation error’ before an
analysis point is accepted. Reducing
this value cause the simulator to
model the effects of energy storage
elements more accurately at the
expense of simulation time. See
“Accuracy and Integration Methods”
on page 292

TRYTOCOMPACT false Forces compaction of data for lossy
transmission lines. This speeds up
simulation at the expense of accuracy.

VERILOGSIMULATOR Verilog simulator used for mixed-
signal Verilog-HDL simulation. Name
specified references a section in the
VerilogHDL.ini file. With the default
configuration, this maybe:

CVER - GPL Cver simulator
Icarus - Icarus Verilog simulator

Option name Default
value

Description
250

Chapter 6 Command Reference
.PARAM

.PARAM parameter_name [=] parameter_value [parameter_name [=]
parameter_value]...

.PARAM parameter_name [=] AGAUSS(nominal, abs_variation,
sigma, [multiplier]) ...

VERILOGROOTFILE vsx_root.v SIMetrix creates the Verilog top-level
module for each run and stores it in a
file with this name

VERILOGROOTMODULE vsx_root Name given to Verilog top-level
module created by SIMetrix

VERILOGPORTPREFIX VSX$_ Connection names within the SIMetrix-
created top-level module have this
prefix.

VERILOGRESOLUTION 1e-15 Timing resolution for Verilog
simulations. This is the smallest time
that can be resolved. The largest time

is this value multiplied by 264

VERILOGDISABLEMOD
ULECACHE

false Disable cache of module information.
See “Module Cache” on page 137 for
further details

VERILOGUSECONSOLE false If set, a console window (or ‘terminal’
in Linux) will be created for the Verilog
simulator. Any output messages
emitted by the Verilog simulator will be
output to this console.

VERILOGDISABLEINTE
RNALVECTORS

false If set, no data for Verilog internal
connections will be generated. See
“Data Vector Output” on page 136

VNTOL 1 Unit = V
The absolute voltage error tolerance.
Circuits with large voltages present
(>100) may benefit from an increase in
this value. See “Accuracy and
Integration Methods” on page 292

WIDTH 80 Number of columns used for list file
output. This may be set to any
reasonable value and not limited to the
choice of 80 or 132 as with SPICE2

WIRETABLE none Define file containing wire table used
for the digital simulator’s wire delay.
See “Wire Delay” on page 308

Option name Default
value

Description
251

Simulator Reference Manual
.PARAM parameter_name [=] AUNIF(nominal, abs_variation,
[multiplier]) ...

.PARAM parameter_name [=] GAUSS(nominal, rel_variation, sigma,
[multiplier]) ...

.PARAM parameter_name [=] UNIF(nominal, rel_variation,
[multiplier]) ...

Defines a simulation variable for use in an expression. Expressions may be used to
define device parameters, to define model parameters, for arbitrary sources and to
define variables themselves. See “Using Expressions” on page 31 for details.

The syntax for the first form is described below. For details of the remaining forms
(using AGAUSS, AUNIF, GAUSS and UNIF) see “Hspice Distribution Functions” on
page 278.

parameter_name Sequence of alpha-numeric characters. Must begin with a letter
or underscore. May not contain spaces.

parameter_value Either:

A constant

OR

An expression enclosed by '{' and '}'. See “Using Expressions”
on page 31

Examples

.PARAM Vthresh = 2.4

.PARAM Vthresh = {(Vhigh+Vlow)/2}

.PARAM F0 1k Alpha 1 C1 {2*c2}

.PARAM R1 {2/(2*pi*freq*C1*alpha}

Netlist Order

.PARAM statements that resolve to a constant are order independent; they can be
placed anywhere in a netlist. They can even be placed after another .PARAM
expression that depends on its value (but note this does not apply in subcircuits).
.PARAM statements that are defined as an expression that depends on other .PARAMs
also defined as an expression must be placed in sequential order. For example, the
following is OK:

.PARAM C2 {C1*alpha*alpha/4}

.PARAM C1 1n

.PARAM alpha 1

.PARAM R1 {2/(2*PI*F0*C2*alpha}

The first .PARAM depends on alpha and C1 which are defined later in netlist. This is
OK (as long as it is not in a subcircuit) because alpha and C1 are constants. The
fourth .PARAM depends on C2 which is defined as an expression. The definition for
must - and does in the above example - come before the definition of R1. The
252

Chapter 6 Command Reference
following would yield an error as the definition for C2 comes after the definition of
R1:

.PARAM R1 {2/(2*PI*F0*C2*alpha}

.PARAM C1 1n

.PARAM alpha 1

.PARAM C2 {C1*alpha*alpha/4}

Note that .PARAMs inside subcircuits are local to the subcircuit. This is explained in
next section.

Subcircuit Parameters

Parameters may be declared within sub circuits. E.g

.subckt ADevice n1 n2 n3 n4

.PARAM Vthresh 3.5

...

...
ends

In the above example, in reference to Vthresh within the subcircuit would use the value
declared by the .PARAM declared inside the subcircuit. That value would not be
available outside the subcircuit definition. Parameters may also be passed to
subcircuits. E.g.

X1 1 2 3 4 ADevice : threshold=2.4

or

X1 1 2 3 4 ADevice params: threshold=2.4

Any reference to threshold within the subcircuit definition would use that value.

Default values for parameters may also be specified in subcircuit definition:

.subckt ADevice n1 n2 n3 n4 params: threshold=2.4

...

.ends

If that subcircuit is called without specifying threshold the default value of 2.4 will
be used. Note that it is not compulsory to declare default values.

Using .PARAM in Schematics

.PARAM statements may be appended to the netlist created by the schematic editor.
For information on how to do this, refer to “Adding Extra Netlist Lines” on page 13.

.PARAM in Libraries

.PARAM statements may be included in libraries specified using .LIB or by global
definitions. SIMetrix will search such libraries for any parameters used in expressions
that are not found in the netlist.
253

Simulator Reference Manual
.POST_PROCESS

.POST_PROCESS scriptname [arguments]

Invokes the SIMetrix script scriptname at the end of a successful simulation. If present
arguments will be passed to the script as a single string.

scriptname may the name of an embedded file defined using .FILE and .ENDF. For
example, the following will cause the text “Simulation Complete” to be displayed in
the command shell when the run is complete:

.FILE on_complete
Echo "Simulation Complete"
.ENDF
.POST_PROCESS on_complete

.POST_PROCESS may be used to perform measurements on simulation results for
display in the command shell or written to a file.

.POST_PROCESS scripts will function even if the simulator is operating in a
standalone mode in which case any displayed messages created from, for example,
Echo or Show, will be directed to the simulator’s output device. In console mode, this
would be the console or terminal and in standalone GUI mode, this would be the
message window in the simulator status box. As there is no environment available in
the standalone mode, not all script commands and functions will be available.

For information about the SIMetrix script language, please refer to the SIMetrix script
reference manual.

.PRINT

.PRINT TRAN|AC|DC|NOISE|TF vector|{expression} ...

Instructs the simulator to output selected simulation data to the list file in tabulated
form.

Where:

vector Name of vector to print. May be in SIMetrix native format or
traditional SPICE format (see notes below).

expression Arithmetic expression of vectors

Notes

A traditional SPICE2 command, this was not supported by SIMetrix until release 4.0.
It is SPICE2 compatible but also supports some additional features:

• NOISE and TF results may be output as well as TRAN, AC and DC

• You can put expressions as well as single values enclosed in '{' and '}'. E.g.

.PRINT TRAN {vout-q5_c}
254

Chapter 6 Command Reference
You can use the SPICE2 style method of accessing single voltages, differential
voltages and device currents. These are of the form:

Single ended voltage

funcname(nodename)

Differential voltage

funcname(nodename, nodename)

Device current

funcname(device_name)

Where:

funcname Function to be applied. For available list, see below.

nodename Node name as specified in the netlist.

device_name Name of device for current.

Available functions:

Function
name

Argument Analysis
mode

Meaning

V node name Transient Voltage at node

V node name AC Voltage magnitude at
node

VM node name AC Voltage magnitude at
node

VP node name AC Voltage phase at
node

VR node name AC Real voltage at node

VDB node name AC dbV at node

VG node name AC group delay at node

I two term. device name TRAN Current in device

IB BJT name TRAN Base current

IB MOSFET name TRAN Bulk current

IC BJT name TRAN Collector current

ID MOSFET/JFET name TRAN Drain current

IE BJT name TRAN Emitter current
255

Simulator Reference Manual
.PRINT statements may be placed inside a subcircuit definition in which case the
device and node names refer to local devices and nodes. Output will be listed for every
instance of the subcircuit.

For transient analysis the results are displayed at the interval specified by the time step
parameter on the .TRAN statement. If this is zero or omitted, it defaults to (tstop-
tstart)/50. The data is created by interpolation unless the NORAW option (see
page 237) is specified in which case a time step is forced at the time step interval.

Examples

.PRINT TRAN V(VOUT)

.PRINT TRAN VOUT

.PRINT TRAN V(VPos, VNeg)

.PRINT TRAN {Vpos-VNeg}

.PRINT AC VDB(VOUT)

.SENS

.SENS V(nodename [,refnodename])| I(sourcename)

This statement instructs the simulator to perform a DC sensitivity analysis. In this
analysis mode, a DC operating point is first calculated then the linearised sensitivity of
the specified circuit voltage or current to every model and device parameter is
evaluated. The results are output to a file (SENS.TXT by default but can be changed
with SENSFILE option) and they are also placed in a new data group. The latter allows
the data to be viewed in the message window (type Display) at the command line and
can also be accessed from scripts for further analysis.

.SETSOA

.SETSOA [LABEL=label] [MODEL=modelname | INST=instname]

IG MOSFET/JFET name TRAN Gate current

IS MOSFET/JFET name TRAN Source current

IS BJT name TRAN Substrate current

IM Two term device AC Device current

IP Two term device AC Current phase

IR Two term device AC Current real part

II Two term device AC Current imaginary
part

IDB Two term device AC Current dB

IG Two term device AC Current group delay

Function
name

Argument Analysis
mode

Meaning
256

Chapter 6 Command Reference
[DEVICE=device] [DERATING=derating] [MEAN]
[ALLOWUNUSED] [ALLOWWILD]
expr1=(min1, max1[, xwindow1])
[expr2=(min2, max2[, xwindow2]) ...]

Defines a Safe Operating Area (SOA) specification. If SOA testing is enabled the
simulator will check simulated results against this specification and record any
violations. See .OPTIONS setting “SOAMODE” on page 249 for details on how to
enable SOA tests.

The results of SOA testing are output to the list file by default and can optionally also
be displayed in the command shell message window, or console window if run in non-
GUI mode. They are also always available via a script function GetSOAResults(). See
.OPTIONS setting “SOAOUTPUT” on page 249 for more details.

label Optional label that will be included in every violation report.
You can use the following symbolic values in this label:

%INST% - substituted with the instance name that violated the
specification. This is only meaningful if MODEL or INST are
specified. (See below)

%MODEL% - substituted with the model name that violated the
specification. Only meaningful if MODEL is specified. (See
below)

%EXPR% - substituted with the expression that violated the
specification.

%SUBCKT% - applicable if the .SETSOA command is located
within a .SUBCKT definition. Value is substituted with the
subcircuit instance reference.

modelname If specified the expression or expressions supplied in expr1 etc.
are applied to every instance belonging to modelname. In this
case the expression may refer to node voltages and pin currents
for each instance processed. See details under expr1, expr2...

instname If specified the expression or expressions supplied in expr1 etc.
are applied to the specified instance (e.g. Q23, M10, R56). In
this case the expression may refer to node voltages and pin
currents of the specified instance. See details under expr1,
expr2...

device If INST or MODEL is specified using a wildcard specification,
only instances of the specified device type will be processed.
For example:

.SETSOA INST=* DEVICE=resistor...

will be applied to all resistors in the circuit. See “Creating a
Device Configuration File” on page 51 for a list of device
names.
257

Simulator Reference Manual
derating Derates limit specification by specified factor. Default is 1.0
which means no derating. Value must be greater than 0. An
expression containing values defined using .PARAM may be
used.

expr1, expr2... Expression to be evaluated and compared against minimum and
maximum specs. This expression can access simulation results
using access variables. The format and scope of these variables
depends on whether MODEL, INST or neither is specified.

If neither is specified, the expression can use the global access
variables defined below:

If there is a clash between a paramname and nodename, that is
if the same name could refer to either a node or a parameter,
then the parameter name takes precedence. To access the node
in this case, use the n(nodename) syntax.

Use the following values if MODEL or INST is specified. In
each case (excepting the global access variable) the variable
accesses a quantity for the instance being processed. With INST
this will be the single instance specified by instname. With
MODEL all instance belonging to the model specified by
modelname will be processed.

Syntax Function Example

nodename Voltage on
node

VOUT - voltage
on node VOUT

n(nodename) Voltage on
node

n(VOUT) -
voltage on node
VOUT

instname#param Instance
parameter

M2#vdsat - vdsat
value for M2

Q23#c - current
in collector of
Q23

paramname Parameter
defined using
.PARAM
258

Chapter 6 Command Reference
Note that currently the use of V() and I() is not accepted and will

Syntax Function Example

 pinname Current in pin c - current in
collector of
transistor

 Ipinname Current in pin Ic - current in
collector of
transistor

Ipinname_m Current in pin
scaled
according to
multiplier (e.g.
M parameter).
Equivalent to
Ipinname/M

Ic_m - current in
collector of
transistor scaled
by multiplier.

Vpinname Voltage on pin Vc - voltage on
collector of
transistor

n(pinname) Voltage on pin n(c) - voltage on
collector of
transistor

Vxy
Where x = pin name 1,
y= pin name 2. Both x
and y must be single
letters

Voltage
between x
and y.

Vbc - voltage
from base to
collector

pow Power in
device

pow_m Power in
device scaled
according to
multiplier.
Equivalent to
pow/M

param Readback
parameter

vdsat - ‘vdsat’ for
MOSFET

#global_name Global node
voltage or pin
current

#VOUT - voltage
on net called
VOUT

#q23#c - current
in collector of
q23

paramname Parameter
defined using
.PARAM
259

Simulator Reference Manual
result in an error message being displayed.

min, max Minimum and maximum values respectively. A violation
message will be produced if the value of the associated
expression is less than min or greater than max. Use ‘*’ if the
limit is to be ignored. E.g. (*, 15) will test a maximum value of
15 but the minimum value will not be tested. min and max
values may be scaled using a .OPTIONS setting, see
“SOADERATING” on page 248.

These values may be entered as expressions containing
variables defined using .PARAM.

xwindow Optional value specifies a minimum window that must be
surpassed before limit violations are registered. For example if
10u is specified for xwindow for a transient analysis, then the
limit must be exceeded continuously for at least 10uS before the
violation is recorded.

This value may be entered as an expression containing variables
defined using .PARAM.

ALLOWUNUSED If INST or MODEL are specified, an error will result if no
instances to be processed are found. If INST is specified the
error will occur if instname doesn’t exist. If MODEL is
specified, the error will occur if there are no instances using
modelname even if modelname itself is valid.

This error will be inhibited if ALLOWUNUSED is specified

ALLOWWILD If specified, wildcards can be used for modelname and
instname. In this case SIMetrix will search for all devices that
match the wildcard specification. Use ‘*’ to match any sequence
of characters and ‘?’ to match a single character.

MEAN If specified all tests will be on the mean of the test expression
over the whole simulation run.

Examples

Test the voltage on the ‘p’ pin of R1. Will fail if it exceeds 0.5V
.setsoa INST=R1 vp=(*,0.5)

Test the power dissipation of R2. Fails if it exceeds 0.5mW
.setsoa INST=R2 pow=(*,0.5m)

Test the current into pin ‘p’ of R3. Fails if it exceeds 0.5mA
.setsoa INST=R3 ip=(*,0.5m)

Test the voltage across R4. Fails if it exceeds 0.85V for at least 100uS. Will be reported
using label “%INST%, high”, which resolves to “R4, high”

.setsoa LABEL="%INST%, high" INST=R4 vd=(*,0.85,100u)

Test the voltage across R4. Fails if it exceeds 0.7V for at least 500uS
.setsoa LABEL="%INST%, low" INST=R4 vd=(*,0.7,500u)
260

Chapter 6 Command Reference
Tests voltage between ‘c’ and ‘e’ pins for all instances of model N1. Fails if voltage
drops below -0.5V or exceeds 25V

.setsoa MODEL=N1 vce=(-0.5,25)

Tests power all devices of type resistor. Fails if this exceeds 0.25W.
.setsoa INST=* ALLOWWILD DEVICE=resistor pow=(*,0.25)

Tests the mean power in instance Q1. Fails if it exceeds “2*bjtderating”. “bjtderating”
must ne defined using a .PARAM statement.

.setsoa LABEL="%INST%, pow(q1)" INST=Q1 MEAN pow=(*,2)
derating=bjtderating

Calculates the expression “n(c)*(q1#c-d1#p)+n(b)*q1#b+n(e)*(q1#e+d1#p)” and fails
if its mean exceeds 1.0. Violations will be reported using label “%SUBCKT%, power”.
Statement is intended to be placed in a subcircuit definition block and “%SUBCKT%”
will resolve to the reference of the subcircuit call.

.setsoa LABEL="%SUBCKT%, power" MEAN "n(c)*(q1#c-
d1#p)+n(b)*q1#b+n(e)*(q1#e+d1#p)"=(*,1)

.SUBCKT and .ENDS

.SUBCKT subcktname n1 [n2]...
+ [[params:] param_name1 [=] param_value1
+ [param_name2 [=] param_value2]...]

This statement begins a subcircuit definition.

subcktname Subcircuit name. This must begin with a letter
but may contain any legal ASCII character
except any whitespace (space, tab) or ' . ' . The
name must be unique i.e. no other subcircuits
may have the same name.

n1, n2 etc. Node names available externally. Must not be
zero.

param_name, param_value Parameter name and value. This sets default
values for parameters used within the
subcircuit. These values can be overridden for
each subcircuit instance. See “Using
Expressions” on page 31 for more info. Note
that it is not compulsory to declare default
values for subcircuit parameters.

IMPORTANT: Either the params: specifier or the first '=' may be omitted but not both.
If both are omitted it becomes impossible for the netlist scanner to tell the difference
between parameter names and node names.

.ENDS [subcktname]

Terminates a subcircuit definition. subcktname may be added for clarity but will be
ignored by SIMetrix.
261

Simulator Reference Manual
A subcircuit consists of a .subckt statement followed by a series of device or model
descriptions and terminating in a .ends statement. A subcircuit is a circuit that can be
called into the main circuit (or indeed another subcircuit) by reference to its name. The
.subckt statement is used to define the subcircuit while a subcircuit call - an 'X' device
- is used to create an instance of that subcircuit. Subcircuits have a number of uses:

• To repeat a commonly used section of circuit.

• To hide detail from the main circuit to aid circuit readability.

• To distribute models of integrated devices such as op-amps.

For a detailed discussion see “Subcircuits” on page 44

Subcircuit definitions usually reside in a text file and are read in as libraries. See User's
Manual for further details.

.TEMP

.TEMP temperature

This statement sets the default simulation temperature. Some devices can override this
on a per instance basis. Units are degrees centigrade.

.TF

.TF inner_sweep_spec [V] pos_out_node [VN] neg_out_node
+ [[INSRC] in_source] [F frequency] [RUNNAME=runname]
[SWEEP outer_sweep_spec]

.TF inner_sweep_spec I source [INSRC in_source]
+ [F frequency] [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice Compatible:
.TF V(pos_out_node [, neg_out_node]) in_source

.TF I (source) [INSRC] in_source

This statement instructs the simulator to perform a small signal transfer function
analysis.

pos_out_node Output node.

neg_out_node Output reference node. Defaults to ground if omitted for
standard SPICE syntax.

in_source Name of input source to which input noise will be referred.

inner_sweep_spec See “General Sweep Specification” on page 205 for syntax.
Defines sweep mode.
262

Chapter 6 Command Reference
outer_sweep_spec If specified, analysis will be repeated according to this
specification. See “General Sweep Specification” on page 205
for syntax.

frequency Frequency at which analysis will be performed for non-
frequency sweeps. Default 0.

source Voltage source to specify output current.

runname If specified, the value for runname will be passed to the
simulation data group as a string variable with name
UserRunName. This may be used to identify which analysis
generated the data which is useful when running netlists with
multiple analyses defined

Notes

The SIMetrix transfer function analysis remains syntax compatible with the SPICE
version but is substantially enhanced. The SPICE version performs the analysis at a
single point with frequency = 0. The SIMetrix implementation performs a swept
analysis using the same sweep algorithm used for AC, DC and NOISE.

Transfer function analysis is similar to AC analysis in that it performs a swept small
signal analysis. However, whereas AC analysis calculates the response at any circuit
node from a (usually) single input source, transfer function analysis calculates the
individual responses from each source in the circuit to a single specified output node.
This allows, for example, the series mode gain, common mode gain and power supply
rejection of an amplifier to be measured in one analysis. The same measurements could
be performed using AC analysis but several of them would need to be run. Transfer
function mode also calculates output impedance or admittance and, if an input source
is specified, input impedance.

The names of the output vectors will be of the form
Input voltage, output voltage
source_name#Vgain

Input voltage, output current
source_name#Transconductance

Input current, output voltage
source_name#Transresistance

Input current, output current
source_name#Igain

Output impedance for voltage out will be called Zout. For a current output, the output
admittance will be calculated and will be named Yout.

If an input source is specified the input impedance will be calculated and called Zin.

Note that although the syntax for .TF retains compatibility with SPICE and earlier
versions of SIMetrix, the output provided is slightly different. Firstly, the data is
263

Simulator Reference Manual
complex even if F=0 and secondly the names of the output vectors are different as
detailed above.

Examples

SPICE compatible. Outputs results at DC.

.TF V(Vout) Vin

As above but decade sweep from 1k to 100k

.TF FREQ DEC 25 1K 100K V(Vout, 0) Vin

Note that in the above example the '0' in V(Vout, 0) is compulsory. If is omitted, Vin
will be assumed as the reference node.

.TRACE

.TRACE vector_name [vector_name ...] graph_id

Set up a trace. This is graph plot that is updated as the simulation runs.

Where vector_name is the name of a net or pin
graph_id is an integer between 1 and 999 to specify which
graphs traces should use - see explanation below

graph_id is an arbitrary number that makes it possible to direct traces to different
graphs. Two traces with the same id will be always be put in the same graph. Traces
from subsequent simulations with that id will also go to that graph if it still exists
otherwise a new one will be created. To force two traces to go to separate graphs, use
different id's. Note that it doesn't matter what the id's value actually is - it could be 1 or
100 - as long as traces that must go to the same graph use the same value.

Note that the AutoAxis feature available for normal plotting also works for Traces. So
if a current and voltage trace are both directed to the same graph, separate axes will be
created for them.

Examples

.trace v1_p 1 q1#c 1

In the above example a voltage - v1_p - and a current - q1#c - will both be traced on the
same graph. As they have different units, the AutoAxis feature will force the curves to
two different y axes.

.trace v1_p 1 q1#c 2
In this example the voltage and current traces will be directed to different graph sheets.

Notes

The .TRACE statement has now been largely superseded by the .GRAPH statement
(page 215) which is much more flexible. However, the .TRACE statement is still
264

Chapter 6 Command Reference
useful for specifying multiple traces on a single line. .GRAPH can only specify one
signal at a time.

.TRAN

.TRAN tstop

OR
.TRAN tstep tstop [tstart [tmaxstep]] [UIC]
+ [SNAPSTEP sstart sstop sstep]

+ [SNAPSHOT slist]
+ [SNAPMODE=DCOP|SAVESTATE|ALL]
+ [FAST=fast_start] [RTNSTEP=rtnstep [RTNSTOP=rtnstop]
+ [RTNSTART=rtnstart]] [RUNNAME=runname]
+ [SWEEP sweep_spec]

This statement instructs the simulator to perform a transient analysis. In this mode the
simulator computes the behaviour of the circuit over the specified time interval. The
circuit's currents and voltages are calculated at discrete time points separated by a
variable time step. This time step is adjusted automatically by the simulator according
to circuit activity. The circuit may contain any number of time varying voltage and
current sources (stimuli) to simulate external signals, test generators etc.

tstep This defines the interval for tabulated results specified by the
.PRINT statement. It also defines the output interval for all data
if the NORAW option is specified. If there are no .PRINT
statements in the netlist and NORAW is not being used, this can
be set to zero or omitted altogether as in form 1 above. If set to
zero it defaults to (tstop-tstart)/50

tstep is also used to define default values for pulse and
exponential stimuli.

Note that if tstep and NORAW are specified a time point is
forced at tstep intervals to calculate the output. This differs from
other SPICE programs which generate output at tstep by
interpolation.

tstep does not control the time step used by the simulator. This is
controlled automatically according to circuit activity.

tstop Stop time. Note that if running in GUI mode, a transient analysis
can be restarted from the front end using the RestartTran
command. See User's Manual for details.

tstart Start time. This is the time at which the storage of transient
analysis outputs commences. It is not the time at which the
analysis begins; this is always zero. tstart is zero if it is omitted.

tmaxstep Maximum time step. The simulator uses the largest time step
possible to achieve the required accuracy but will not increase it
beyond this value. If not specified it is set to (tstop-tstart)/50 .
265

Simulator Reference Manual
UIC If specified a DC operating point is not calculated and initial
condition specifications are used instead

fast_start If specified, the simulation will run at reduced accuracy but
higher speed for the time specified by this parameter. The
reduced accuracy is implemented by altering a number of
tolerances and internal parameters. See notes below for more
details.

rtnstep If this parameter is specified, Real Time Noise analysis will be
enabled. Note that this feature is not available with all versions
of the program. rtnstep specifies the step size of the noise
generators. See “Real Time Noise Analysis” on page 267.

rtnstart Specifies time at which real time noise generators are switched
on.

rtnstop Specifies time at which real time noise generators are switched
off.

sstart Time at which snapshot saving begins. See below for
information on snapshots.

sstop Time at which snapshot saving stops. See below for information
on snapshots

sstep Interval between snapshot points. See below for information on
snapshots

slist One or more values defining absolute times at which snap shots
are saved. See below for information on snapshots

runname If specified, the value for runname will be passed to the
simulation data group as a string variable with name
UserRunName. This may be used to identify which analysis
generated the data which is useful when running netlists with
multiple analyses defined

DCOP, SAVESTATE, ALL
Snapshot mode.
DCOP: Saves bias point information only.
SAVESTATE: Saves state of circuit for subsequent reload for
small signal analysis
ALL: Both of the above

The default is DCOP

Fast Start

If the FAST parameter is specified, the simulation will begin with a number of
tolerances and internal parameters altered to speed up the simulation at the expense of
accuracy. Just before the end of the fast start period, these tolerances and parameters
will be gradually restored to their normal values. Fast start is an aid for simulating
circuits such as switching power supplies and oscillators for which the initial start up
period is not of interest but takes a long simulation time. Note that although the fast
start interval can run sometimes as much as twice as quickly as normal, the fact that
accuracy is impaired can mean that the final steady state reached may not be very
266

Chapter 6 Command Reference
accurate. This means that after the fast start period, an additional settling time may be
required for full accuracy to be reached.

Fast start sets the values of POINTTOL and RELTOL according to the value specified
by FASTPOINTTOL and FASTRELTOL respectively.

Snapshots

This feature allows the state of a simulation to be saved at user specified times during a
transient analysis. The states saved can subsequently be reloaded to perform small
signal AC analyses.

This allows the small signal response of a circuit to be examined at any point during a
transient analysis. This is especially useful in situations where a circuit is found to be
unstable in a transient run but this instability cannot be reproduced at the operating
point usually derived for an AC analysis.

The bias point information at the snapshot time may also optionally be saved. This
information is output to the list file.

To specify snapshot output, specify either the SNAPSHOT or SNAPSTEP keywords
with their associated parameters.

To initialise a small signal analysis with snapshot data, you must specify the
SNAPSHOT step mode of a multi-step analysis. See “Multi Step Analyses” on
page 207 for details

Real Time Noise Analysis

This is an extension of transient analysis rather than a separate analysis mode. When
activated, real time noise sources are added to all noisy devices with a magnitude and
frequency distribution calculated using the same equations used for small signal
analysis. This allows noise analysis to be performed on sampled data systems and
oscillators.

To use real time noise analysis, the following parameters may be added to the .TRAN
analysis line.

RTNstep Source step size in seconds. This will need to be small enough
to cover the frequency range of interest. The noise magnitude
starts rolling off at about 1/3*stepsize. Default=0 i.e. real time
noise analysis disabled.

RTNstart Optional. Time after analysis start at which the noise sources
will be enabled. Default = zero

RTNstop Optional. Time after analysis start at which the noise sources
will be disabled. Default = stop time.

The parameters added to the .TRAN line must be named in the same way as .MODEL
parameters are named.
267

Simulator Reference Manual
Example

.TRAN 0 1m RTNstep=1u RTNstart=500u

Analysis time 1m, RTN step size 1u, real time sources start at 500u. The step size
parameter - i.e. the first parameter on the .TRAN line - must be supplied if real time
noise parameters are to be included. This is only to comply with the syntax rules not
because the step size is needed for any other purpose. In most cases, just set it to zero
as in the above example.

Test Results

To test real time noise and verify it's accuracy we ran a test on a number of circuits
which compare AC noise with real time noise. The procedure was to run real time
noise analysis 50 times then plot the averaged Fourier spectrum. This test was repeated
for different transient run times and step sizes to build a noise spectrum over several
decades. The graph below is the result of one such test. This was carried out on the
BSIM3 buffer circuit provided in one of the examples except that a value for AF - the
flicker noise parameter - was added to the models. As can be seen in the graph below
the real time noise results strongly follow the AC noise results.

Similar tests were performed on circuits containing each of the major noise generating
devices including diodes, BJTs, JFETs, resistors (including its flicker noise parameter)
and also the NXP MOS9 and MEXTRAM devices. All showed results similar to below
with a close similarity between AC noise and real time noise.

These tests were performed using a simple script. This script is called rtntest.sxscr and
can be found on the installation CDROM at SCRIPTS/EXAMPLES. This can also be
found at our web site. Please refer to “Further Documentation” on page 53 for details.
268

Chapter 6 Command Reference
Frequency / Hertz

1k 10k 100k 1M 10M 100M 1G

20n

40n

100n

200n

400n

1µ

2µ

4µ

10µ

AC Noise result

20uS RTNstep=20nS

2mS RTNstep=2uS

200n RTNstep=100p
269

Simulator Reference Manual
Chapter 7 Monte Carlo Analysis

Overview

Monte Carlo analysis is a procedure to assess manufacturing yields by repeating
simulation runs with varying applied random variations to component parameters. The
technique is very powerful and usually gives a more realistic result than worst-case
analysis which varies component values to their extremes in a manner which produces
the worst possible result.

The implementation of Monte Carlo analysis in SIMetrix has been designed to be
quick to set up for simple cases while still providing the required flexibility for more
advanced requirements as might be required for integrated circuit design.

SIMetrix offers a level of flexibility for tolerance specification that cannot be found in
other products including some high priced UNIX based applications. It is possible, for
example, for different model parameters to be dependent on a single random variable.
This makes it possible to model the fact that a number of model parameters might be
dependent on a single physical characteristic, for example, the base width of a bipolar
transistor. Of course, lot tolerances are also implemented accounting for the matching
of devices in integrated circuits and other multiple components built onto a common
substrate. However, in many products, lot tolerances can only be applied to the same
type of device. In SIMetrix it is possible to model parametric relationships between
different types of device which occur in integrated circuits but which are rarely taken
into account.

As well as conventional multiple step Monte Carlo analysis, single step Monte Carlo
sweeps may also be performed. These are available for the four swept modes, .AC,
.DC, .NOISE and .TF. For example, a Monte Carlo analysis of the DC offset voltage of
an amplifier can be performed using a single run of .DC using a special sweep mode.
This is dramatically faster than the alternative of repeated .OP runs. This type of
analysis can also be used to analyse the gain of an amplifier at a single frequency using
.AC or .TF or even the noise, again at a single frequency, using .NOISE.

Specifying a Monte Carlo Run

Monte Carlo runs are invoked in the same way as multi-step analyses (see “General
Sweep Specification” on page 205). The basic syntax is:

.analysis_name analysis_parameters SWEEP MONTE num_runs
NUMCORES=num_cores

Where:

.analysis_name Dot statement for analysis. Either .TRAN, .AC, .DC, .NOISE,
.TF

analysis_parameters Specific parameters for that analysis

num_runs Number of runs
270

Chapter 7 Monte Carlo Analysis
num_cores Specify the number of processor cores to use.

Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

Run 1000 Monte Carlo steps for 1mS transient analysis using 4 processor cores. This
will split the 1000 steps into 4 cores with each running 250 steps

.TRAN 1m SWEEP MONTE 1000 NUMCORES=4

100 Runs of a DC Sweep

.DC V1 0 5 0.01 SWEEP MONTE 100

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 50 times

.AC DEVICE=V5 LIN 100 -300m 300m F=100000 SWEEP MONTE 50

Specifying a Single Step Monte Carlo Sweep

Monte Carlo sweep is one of the six modes available to the swept analysis modes, .AC,
.DC .NOISE and .TF. The other modes are explained in “General Sweep Specification”
on page 205. The general syntax is:

.analysis_name MONTE num_points analysis_parameters

Where:

.analysis_name Dot statement for analysis. Either .AC, .DC, .NOISE, .TF

analysis_parameters Specific parameters for that analysis

num_points Number of points in sweep

Examples

1000 point Monte Carlo sweep.

.DC MONTE 1000

AC Monte Carlo sweep 100 steps. Frequency = 10K.
This is useful if - say - you are interested in the gain of an amplifier at one frequency
and it needs to lie within a defined tolerance. Previously you would need to repeat an
AC sweep at a single frequency to achieve this which could take a long time especially
if the circuit has a difficult to find operating point. The analysis defined by the
following line will take very little time even for a large circuit.

.AC MONTE 100 F=10K
271

Simulator Reference Manual
Log File

Unless explicitly disabled with the NOMCLOG option, a log file will always be
generated for Monte Carlo analyses. It has the default name of MCLOG.TXT but this
can be changed with the MCLOGFILE option. Here is an example of an actual output

Run 1: Seed=1226978751
Run 2: Seed=1521158126

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q10.D1:bv 5.9 5.9185638 (0.314641%) 5.8463766 (-0.90887%)
Q10.Q1:bf 220 283.10907 (28.68594%) 130.81497 (-40.5386%)
Q10.Q1:is 380a 368.7899a (-2.95004%) 219.7988a (-42.1582%)
Q11.D1:bv 5.9 5.9425623 (0.721395%) 5.8262401 (-1.25017%)
Q11.Q1:bf 220 285.27225 (29.66921%) 129.91303 (-40.9486%)
Q11.Q1:is 380a 354.1045a (-6.8146%) 220.1177a (-42.0743%)
Q12.D1:bv 5.9 5.8957932 (-713ppm) 5.787891 (-1.90015%)
Q12.Q1:bf 220 280.37304 (27.44229%) 130.28208 (-40.7809%)
Q12.Q1:is 380a 359.6985a (-5.34249%) 225.8706a (-40.5604%)
Q13.D1:bv 5.9 5.9020281 (343.74ppm) 5.8132485 (-1.47036%)
Q13.Q1:bf 220 280.04731 (27.29423%) 129.20488 (-41.2705%)
Q13.Q1:is 380a 367.7199a (-3.2316%) 222.1358a (-41.5432%)
Q14.D1:bv 5.9 5.9178142 (0.301936%) 5.8096709 (-1.531%)
Q14.Q1:bf 220 276.57192 (25.71451%) 129.93424 (-40.939%)
Q14.Q1:is 380a 364.6015a (-4.05223%) 222.7107a (-41.3919%)
Q4.D1:bv 5.9 5.9398543 (0.675496%) 5.8354342 (-1.09434%)
Q4.Q1:bf 220 277.08078 (25.94581%) 127.82878 (-41.896%)
Q4.Q1:is 380a 362.7751a (-4.53287%) 225.9888a (-40.5293%)
Q7.D1:bv 5.9 5.9281884 (0.47777%) 5.8421649 (-0.98026%)
Q7.Q1:bf 220 276.66227 (25.75558%) 129.29449 (-41.2298%)
Q7.Q1:is 380a 360.4184a (-5.15304%) 227.0065a (-40.2614%)
Q8.D1:bv 5.9 5.8811702 (-0.31915%) 5.8260238 (-1.25383%)
Q8.Q1:bf 220 280.33672 (27.42578%) 131.98533 (-40.0067%)
Q8.Q1:is 380a 361.0834a (-4.97804%) 218.837a (-42.4113%)
Q9.D1:bv 5.9 5.9001842 (31.215ppm) 5.8517296 (-0.81814%)
Q9.Q1:bf 220 281.41183 (27.91447%) 128.02565 (-41.8065%)
Q9.Q1:is 380a 358.8014a (-5.57857%) 221.6128a (-41.6809%)

The ‘Device’ column provides the name of the device and its model or instance
parameter that is being reported. Q10.D1 is a diode ref D1 inside subcircuit Q1, BV is
the model parameter.

The ‘Nom’ column displays the nominal value for that parameter.

Two columns are listed for each run. ‘Value’ is the actual value of the parameter and
‘(Dev.)’ is the deviation from the nominal.

The ‘Seed’ values displayed for each run at the top are the values used to seed the
random number generator. These can be used to set the SEED option in order to repeat
a particular random set. See below for more details.
272

Chapter 7 Monte Carlo Analysis
Seeding the Random Number Generator

The random variations are created using a pseudo random number sequence. The
sequence can be seeded such that it always produces the same sequence of numbers for
a given seed. In Monte Carlo analysis, the random number generator is seeded with a
new value at the start of each run and this seed value is displayed in the log file (see
above). It is also possible to fix the first seed that is used using the SEED option. This
makes it possible to repeat a run. To do this, note the seed value of the run of interest
then add the line:

.OPTIONS SEED=seed_value

For example if you wanted to repeat run 2 in the above example you would add this
line:

.OPTIONS SEED=1521158126

The first run of each Monte Carlo analysis will use the same random values as run 2
above. Note this assumes that only changes in values are made to the circuit. Any
topology change will upset the sequence.

Specifying Tolerances

Overview

Tolerances for Monte Carlo analysis may be specified by one of the following
methods:

1. Using a distribution function in an expression.

2. Using the device parameters TOL, MATCH and LOT

3. Using a tolerance model

1. above is new to release 4 and is the most general and flexible. 2 and 3 are provided
primarily for backward compatibility but may also be more convenient in some
circumstances.

Distribution Functions

To specify Monte Carlo tolerance for a model or device parameter, define the
parameter using an expression (see “Using Expressions” on page 31) containing one of
the following 12 functions:

Name Distribution Lot?

GAUSS Gaussian (3-sigma) No

GAUSSL Gaussian (3-sigma) Yes

UNIF Uniform No

UNIFL Uniform Yes
273

Simulator Reference Manual
The logarithmic versions are included for compatibility with release 3.1 and earlier but
are nevertheless useful for some parameters which are logarithmic in nature such as the
IS parameter for PN junctions.

The graphs below show the characteristics of the various distributions. The curves
were plotted by performing an actual Monte Carlo run with 10000 steps.

WC Worst case No

WCL Worst case Yes

GAUSSE Gaussian logarithmic (3-
sigma)

No

GAUSSEL Gaussian logarithmic (3-
sigma)

Yes

UNIFE Uniform logarithmic No

UNIFEL Uniform logarithmic Yes

WCE Worst case logarithmic No

WCEL Worst case logarithmic Yes

Name Distribution Lot?
274

Chapter 7 Monte Carlo Analysis
Examples

Apply 50% tolerance to BF parameter of BJT with gaussian distribution.

.MODEL NPN1 NPN IS=1.5e-15 BF={180*GAUSS(0.5)}

Lot Tolerances

The lot versions of the functions specify a distribution to be applied to devices whose
tolerances track. These functions will return the same random value for all devices that
reference the same model.

Alternatively, a device can be given a lot value as was required with earlier versions of
SIMetrix. Devices must have the same lot value, and also reference the same model, in
order to track. This allows, for example, two or more chips using the same process to
be simulated together without having to rename the models.

Examples

Specify 50% uniform lot tolerance and 5% gaussian device tolerance for BF parameter

k

0

1

2

3

4

5

V 500mV/div

0 0.5 1 1.5 20

50

100

150

200

250

300

350

Gauss

Unif

GaussE

UnifE

WC

WCE
275

Simulator Reference Manual
.MODEL NPN1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Here is an abbreviated log file for a run of a circuit using 2 devices referring to the
above model:

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 93.308486 (-48.162%) 241.3287 (34.0715%)
Q2:bf 180 91.173893 (-49.3478%) 245.09026 (36.16126%)

 Run 3 Run 4
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 185.95824 (3.310133%) 210.46439 (16.92466%)
Q2:bf 180 190.8509 (6.02828%) 207.04202 (15.02335%)

For the four runs BF varies from 91 to 245 but the two devices never deviate from each
other by more than about 2.7%.

Notes

The tracking behaviour may not be as expected if the model definition resides within a
subcircuit. When a model is defined in a subcircuit, a copy of that model is created for
each device that calls the subcircuit. Here is an example:

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1
Q2 SUB 1 2 SUB P1

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

.ENDS

In the above, XQ100 and XQ101 will not track. Two devices referring to N1 inside the
subcircuit definition would track each other but different instances of the subcircuit
will not. To make XQ100 and XQ101 track, the definition of N1 should be placed
outside the subcircuit. E.g.

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1
Q2 SUB 1 2 SUB P1

.ENDS

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Arguments to Distribution Functions - the ‘key’ Value

Each of the distribution functions takes 1 or 2 arguments. The first argument is the
tolerance while the second is an optional key value. The key is an arbitrary number -
preferably an integer - which, in effect, names a random variable for which the results
of that distribution function will be based. Another call to the same distribution
276

Chapter 7 Monte Carlo Analysis
function in the same model and with the same key value, will also be based on the
same random variable and return the same value for each Monte Carlo step. The key
make it possible to accommodate parameters that tend to track each other possibly
because they depend on the same physical characteristic of the device.

Example

Suppose the BF and TF parameters of a BJJT tend to track each other. That is a 50%
increase in BF tends to be accompanied by a 50% increase in TF (there is no physical
basis for this; it's just an example). The following model definition would implement
this:

.MODEL NPN1 NPN BF={UNIF(0.5,1)*180} TF={1e-11*UNIF(0.5,1)}

For all devices using that model, BF and TF will always have a fixed relationship to
each other even though each parameter can vary by +/-50% from one device to the
next.

Here is the log of a run carried out on a circuit with two of the above devices:

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 226.52869 (25.84927%) 117.2733 (-34.8482%)
Q1:tf 10p 12.58493p (25.84927%) 6.515184p (-34.8482%)
Q2:bf 180 179.58993 (-0.22782%) 164.21785 (-8.76786%)
Q2:tf 10p 9.977218p (-0.22782%) 9.123214p (-8.76786%)

Notice that the BF and TF parameters always deviate by exactly the same amount for
each device. However, the two devices do not track each other. If this were needed, the
lot versions of the functions could be used instead. E.g.

.MODEL NPN1 NPN BF={UNIFL(0.5,1)*180} TF={1e-11*UNIFL(0.5,1)}

This is the log for such an example:

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 104.57858 (-41.9008%) 93.855425 (-47.8581%)
Q1:tf 10p 5.809921p (-41.9008%) 5.21419p (-47.8581%)
Q2:bf 180 104.57858 (-41.9008%) 93.855425 (-47.8581%)
Q2:tf 10p 5.809921p (-41.9008%) 5.21419p (-47.8581%)

Distribution Functions and .PARAM

The key mechanism described above only works for parameters within the same
model. If you wish to define a fixed relationship between parameters of different
models then you can define a random variable using .PARAM.

Using a distribution function in a .PARAM expression in effect creates a global
random variable. .PARAM expressions are only evaluated once for each Monte Carlo
step so the parameter it defines will be the same value wherever it is used.
277

Simulator Reference Manual
Note that .PARAM values used for this purpose should be defined at the top level i.e.
not in a sub-circuit. If defined in a sub-circuit they will be local to that sub-circuit so
each instance of the sub-circuit will use its own random variable.

Hspice Distribution Functions

SIMetrix supports the Hspice method of defining Monte Carlo tolerances. This feature
needs to be enabled with an option setting; see “Enabling Hspice Distribution
Functions” below. The Hspice method uses random variables created using a special
.PARAM syntax in one of the following form:

.PARAM parameter_name [=] AGAUSS(nominal, abs_variation,
sigma, [multiplier]) ...

.PARAM parameter_name [=] AUNIF(nominal, abs_variation,
[multiplier]) ...

.PARAM parameter_name [=] GAUSS(nominal, rel_variation, sigma,
[multiplier]) ...

.PARAM parameter_name [=] UNIF(nominal, rel_variation,
[multiplier]) ...

Where:

parameter_name Name of random variable

nominal Nominal value

abs_variation Absolute variation. AGAUSS and AUNIF vary the nominal
value +/- this value

rel_variation Relative variation. GAUSS and UNIF vary the nominal value by
+/- rel_variation*nominal

sigma Scales abs_variation and rel_variation for functions GAUSS
and AGAUSS. E.g. if sigma is 3 the standard deviation of the
result is divided by 3. So AGAUSS(0,0.01,3) would yield a +/-
1% tolerance with a 3 sigma distribution

multiplier If included this must be set to 1 otherwise an error message will
be displayed and the simulation aborted. Included for
compatibility with existing model files only.

Random variables created using the above method do not behave in the same way as
regular parameters created using the native SIMetrix distribution functions. They
actually behave like function calls and return a different value each time they are used.
Random variables created using .param and a native distribution function are evaluated
just once and always return the same value. Internally, the above are implemented
using a .FUNC definition to define a function with no arguments.

For example, the following are both quite legal:

.PARAM rv1 = UNIF(10,1)

.PARAM rv2 = 'UNIF(10,1)'
278

Chapter 7 Monte Carlo Analysis
The first (rv1) will provide a nominal value 10.0 +/- 1.0 with a new value calculated
each time it is used. The second (rv2) is a native SIMetrix distribution function, will
produce a value varying from -9.0 to +11.0 and will always have the same value. With
the above definitions for rv1 and rv2, consider the following regular .PARAM
statements:

.PARAM rand1 = rv1

.PARAM rand2 = rv1

.PARAM rand3 = rv2

.PARAM rand4 = rv2

rand1 and rand2 will have different values. rand3 and rand4 will have the same values.

Enabling Hspice Distribution Functions

Hspice distribution functions need to be enabled with an option setting as follows:

.OPTIONS MCHSPICE

Important: This option also changes the way Monte Carlo operates in a fundamental
way by disabling model spawning. This is a process which gives each instance its own
separate copy of its model parameters and allows ‘dev’ (or ‘mismatch’) tolerances to
be implemented. Without model spawning dev tolerances cannot be implemented
except by giving every instance their own copy of a model.

With the Hspice method this can only be done easily by wrapping up .MODEL
statements inside a .SUBCKT definition. Each instance will then effectively get its
own .MODEL statement and mismatch parameters can be defined.

TOL, MATCH and LOT Device Parameters

These parameters may be used as a simple method of applying tolerances to simple
devices such as resistors. The TOL parameter specifies the tolerance of the device's
value. E.g.

R1 1 2 1K TOL=0.05

The above resistor will have a tolerance of 5% with a gaussian distribution by default.
This can be changed to a uniform distribution by setting including the line:

.OPTIONS MC_ABSOLUTE_RECT

 in the netlist.

Multiple devices can be made to track by specifying a LOT parameter. Devices with
the same LOT name will track. E.g.

R1 1 2 1K TOL=0.05 LOT=RES1
R2 3 4 1k TOL=0.05 LOT=RES1

R1 and R2 in the above will always have the same value.

Deviation between tracking devices can be implemented using the MATCH parameter.
E.g.
279

Simulator Reference Manual
R1 1 2 1K TOL=0.05 LOT=RES1 MATCH=0.001
R2 3 4 1k TOL=0.05 LOT=RES1 MATCH=0.001

R1 and R2 will have a tolerance of 5% but will always match each other to 0.1%.
MATCH tolerances are gaussian by default but can be changed to uniform by
specifying

.OPTIONS MC_MATCH_RECT

The default distributions for tolerances defined this way are the logarithmic versions as
described in “Distribution Functions” on page 273. To use a linear distribution, add
this statement to netlist (or F11 window in the schematic editor):

.OPTIONS mcUseLinearDistribution

If using device tolerance parameters, note that any absolute tolerance specified must be
the same for all devices within the same lot. Any devices with the same lot name but
different absolute tolerance will be treated as belonging to a different lot. For example
if a circuit has four resistors all with lot name RN1 but two of them have an absolute
tolerance of 1% and the other two have an absolute tolerance of 2%, the 1% devices
won't be matched to the 2% devices. The 1% devices will however be matched to each
other as will the 2% devices. This does not apply to match tolerances. It's perfectly OK
to have devices with different match tolerances within the same lot.

Tolerance Models

Overview

Tolerance models are an alternative method of applying tolerances to device models to
the distribution function method described in an earlier section. The distribution
function method is in general more flexible and is recommended for most applications.
However, the tolerance model method has some advantages as follows:

• It is compatible with earlier SIMetrix versions from 2.0 to 3.1

• It allows tolerances to be applied to devices without modifying the main model.

Definition

The format for a tolerance model:

.MODEL modelname modeltype.tol parameter_list

modelname must be the same name as the normal model for the device while
modeltype must be the same type. So for example a tolerance model for a Q2N2222
transistor might be:

.MODEL Q2N2222 npn.tol BF=0.5

This will vary the BF parameter over a +/- 50% range for all BJTs referring to the
Q2N2222 model. The above model only specifies one parameter but you can place any
parameter specified for that device in a tolerance model.
280

Chapter 7 Monte Carlo Analysis
For MOSFETs the level number must be included with the tolerance model otherwise
the model will be ignored.

Important note

Note that tolerances will only be applied to parameters explicitly specified in the base
model for the device. Tolerances will not be applied to default values. If the base
model for the Q2N2222 device in the above example is:

.MODEL Q2N2222 npn (IS=2.48E-13 VAF=73.9 NE=1.2069
+ TF=4.00E-10)

The BF parameter in the tolerance model would not be used as it is not specified in the
base model. If the base model was modified to:

.MODEL Q2N2222 npn (IS=2.48E-13 VAF=73.9 NE=1.2069
+ TF=4.00E-10) BF=400

Then the BF tolerance would be applied.

Matching Devices Using Tolerance Models

To match devices with tolerances defined using a tolerance model, specify the LOT
parameter on the device line. E.g.

Q1 1 2 3 0 Q2N2222 LOT=lot1
Q2 4 5 6 0 Q2N2222 LOT=lot1

.MODEL Q2N2222 npn.tol BF=0.5

In the above example the BF parameter for Q1 and Q2 will always be the same.

To specify a deviation for matched devices requires a match tolerance model
definition. This is of the form:

.MODEL modelname modeltype.match parameter_list

modelname must be the same name as the base model for the device while modeltype
must be the same type. So for example a matching tolerance model for a Q2N2222
transistor might be:

.MODEL Q2N2222 npn.match BF=0.5

Note that the components will only be matched if they all refer to the same model. Any
components with the same lot name but referring to a different model treated as if they
belong to a different lot.
281

Simulator Reference Manual
Chapter 8 Convergence, Accuracy and
Performance

Overview

In transient and DC analyses, an iterative method is used to analyse the circuit.
Generally, iterative methods start with an initial guess for the solution to a set of
equations and then evaluate the equations with that guess. The result of that evaluation
is then used to derive a closer estimate to the final solution. This process is repeated
until a solution is found that is within the error tolerance required. SIMetrix and SPICE

use a technique known as Newton-Raphson1 iteration which usually converges
extremely rapidly. However, there are occasions when this process is either
unreasonably slow or fails altogether. Under these circumstances the simulation will
abort.

SIMetrix offers superior convergence to all other products in its price bracket and
possibly all PC based simulators generally. SIMetrix passes 100% of the circuits in the
CircuitSim90 benchmark suite compared with about 60% for unmodified SPICE3.
This performance has been achieved as a result of the following developments to the
simulator core.

• Automatic pseudo transient analysis algorithm for operating point solution. See
below for details.

• Enhancements to GMIN and source stepping algorithms to use a variable step
size. (The standard SPICE3 variants use a fixed step).

• Junction GMIN DCOP Convergence Method

• Proprietary enhancements to transient analysis algorithm.

• New matrix solver

• Improvements to device models.

With these improvements, convergence failure with SIMetrix is extremely rare.
However, it is impossible to eliminate this problem altogether and there still remain
some circuits which fail.

In this chapter we explain some of the causes of non-convergence and some of the
strategies SIMetrix uses to prevent it. Also explained is what to do in the rare event
that convergence fails.

DC Operating Point

Overview

As explained in “DC Operating Point Algorithms” on page 288 SIMetrix has four
different algorithms at its disposal to solve the DC operating point. For this analysis

1. Sir Isaac Newton 1642-1727 and Joseph Raphson 1648-1715. This algorithm has been
around somewhat longer than circuit simulators
282

Chapter 8 Convergence, Accuracy and Performance
mode to fail, and assuming the default settings are being used, all four algorithms must
fail.

The following sections describe the possible reasons for failure of each mode and what
can be done about them.

The general procedure is as follows:

1. Check your circuit. Check that all components are the correct way around and
have the correct values. Make sure you haven't used 'M' when you meant 'Meg'.

2. Refer to section “Source and GMIN Stepping” and see if GMIN or source
stepping can be made to work.

3. Refer to section “Pseudo Transient Analysis” to get pseudo transient analysis
converging.

4. Contact technical support. We don't officially offer a convergence fixing service
and reserve the right to decline help. However, we are always interested in non-
converging circuits and usually we will look at your circuit to see if we can
identify the problem.

Source and GMIN Stepping

By default, if these modes fail, SIMetrix will carry on and attempt pseudo transient
analysis. It will not do so only if instructed not to using the dcopSequence option (See
“Controlling DC Method Sequence” on page 291). Pseudo transient analysis usually
succeeds but sometimes can take a long time so you may prefer to get one of these
methods working instead. Also, if pseudo transient analysis fails it is desirable to first
see if GMIN or source stepping can be made to work.

There are a few options you can set to encourage these modes to converge. These are

It is only worth changing gminMaxIters or sourceMaxIters if the iteration limit is
actually being reached. Often GMIN and source stepping fail to converge before the
iteration limit is reached. To find out, select the command shell menu
Simulator | Show Statistics. This displays, amongst other things, the number of
iterations used for GMIN and/or source stepping. If they exceed 1000 then the iteration
limit has been reached. This means that GMIN/source stepping may have succeeded if
it had been given a chance.

Name Default Set to What it does

GMINSTEPITERLIMIT 20 100 The number of iterations
attempted for each
GMIN step

GMINMAXITERS 1000 0 (equivalent to
infinity)

Total number of
iterations allowed for
GMIN stepping

SOURCEMAXITERS 1000 0 (equivalent to
infinity)

Total number of
iterations allowed for
source stepping
283

Simulator Reference Manual
Pseudo Transient Analysis

Pseudo transient analysis is the most powerful method that SIMetrix uses and it is rare
for it to fail. It is not however infallible and can go wrong for the following reasons:

1. The transient analysis itself failed to converge. (This is rare)

2. The circuit oscillates

Convergence failure in pseudo transient analysis

You will get the error message

Cannot find DC operating point
No convergence in pseudo transient analysis

The reasons why this may happen are the same as for transient analysis and are
covered in “Fixes for Transient Non-convergence” on page 287.

Circuit oscillation

You will see the message

Cannot find DC operating point
Iteration limit exceeded in pseudo transient analysis

The circuit can oscillate because:

1. It is designed to i.e. it is or has an oscillator

2. It is supposed to be stable but passes an unstable region during supply ramping

3. It is supposed to be stable but has a fault in its design

4. It is stable but is made unstable by the capacitors added during the pseudo
transient analysis

If the circuit is an oscillator

If 1. then you must disable the oscillator during the DC solution. You can do this by
one of the following methods:

1. Apply an initial condition to a point on the circuit that will break the oscillator's
feedback loop.

2. Use the capacitor/inductor PTAVAL parameter to change its value during pseudo
transient analysis. This parameter can be applied to a component or components
that form part of the oscillator. In the netlist the parameter is applied at the end of
the component line. E.g for a capacitor:

C12 N2 N6 1.2n PTAVAL=1

In the above a 1.2n capacitor will take the value of 1 farad during pseudo
transient analysis.
284

Chapter 8 Convergence, Accuracy and Performance
The circuit is not supposed to be an oscillator

If the circuit does not have any intentionally unstable elements then diagnosis of the
problem is a little harder. Firstly, you need to rule out 4. above as a possible cause. As
explained in “DC Operating Point Algorithms” on page 288, SIMetrix adds its own
capacitors to your circuit during pseudo transient analysis in order to overcome
potential problems with regenerative action. The problem is that these added capacitors
can themselves make a circuit unstable. So the first thing to try is to inhibit the addition
of these capacitors. To do this, add the following line to the netlist (See “Adding Extra
Netlist Lines” on page 13 to find out how to add to a schematic).

.OPTIONS PTACONFIG=1

then re-run the simulation.

The circuit is not supposed to be an oscillator but it is

If this fails, then life gets even more complicated! If it fails with the message

Iteration limit exceeded in pseudo transient analysis

then it is very likely that the circuit is oscillating or entering an unstable region. If a
different message is displayed go to “The circuit doesn't oscillate but still doesn't
converge” below. To allow diagnosis of what is happening SIMetrix provides a method
of analysing the circuit during the pseudo transient ramp. By default, no data is output
during pseudo transient analysis but this can be changed as follows:

1. Set the analysis mode to DC operating point only.

2. Add the simulator option ptaOutputVecs by adding the following line to the
netlist:

.OPTIONS PTAOUTPUTVECS

3. Now run the simulation for a while or until it stops.

You can now probe the circuit in the normal way to see what is oscillating. Once the
oscillation has been fixed, you should be able to simulate the circuit successfully.

The circuit doesn't oscillate but still doesn't converge

As there are no added capacitors, there is a risk that pseudo transient analysis can fail
for the same reason that GMIN and source stepping sometimes fail. In this case you
will get the message:

No convergence in pseudo transient analysis

If this happens your only recourse is the final desperation measure. This is to repeat the
simulation with all valid values of ptaConfig from 2 to 15. (You can skip 7 as this is the
default). ptaConfig is a simulator option that controls some of the parameters used in
pseudo transient analysis. Most circuits pass for all settings but a few are more
selective.
285

Simulator Reference Manual
Accept Pseudo Transient Unconditionally

You can specify pseudo transient analysis to be accepted unconditionally at some time
after it has started. This is often a good solution to problems caused by circuit
oscillation especially if the oscillation is small and unintended. To accept pseudo
transient unconditionally, set the option:

.OPTIONS PTAACCEPTAT=time

Specify a time value that is adequate for the circuit state to settle as much as possible.

Junction Initialised Iteration

By default, this is the first method to be tried. If it fails, SIMetrix will then attempt
source stepping, GMIN stepping and finally pseudo transient analysis. Usually one of
these other methods will succeed and it is not worth spending time getting this method
to work.

If it does work, however, this is usually the fastest method and this can be put to good
use for repetitive runs e.g. Monte Carlo. It can be made to succeed using nodesets (see
next section) and with a wisely chosen selection it is possible to speed up repetitive
runs. Assuming one of the other methods does complete to a solution, the best way of
creating nodesets is by using the SaveRHS command. This is explained in the next
section.

Using Nodesets

Nodesets have two uses, one to aid convergence and the other to bias the solution in
circuits that have more than one stable state.

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage
is applied via a 1 Ohm (by default) resistor and the solution is completed to
convergence (by any of the methods). The nodeset is then released and the solution
repeated. If the nodeset voltage is close to the actual solution the convergence of the
second solution should be rapid.

With SIMetrix, it is rarely necessary to use nodeset's to find the DC solution of a
circuit. They can, however, be useful for speeding up the operating point analysis for
circuit that have already been solved. You may wish to do this for a Monte-Carlo
analysis, for example.

SIMetrix provides a means of creating nodeset's using the SaveRHS command. To
make use of this, proceed as follows:

1. Run a DC operating point analysis

2. Save the solution to a file using the SaveRhs command as follows:

SaveRhs /nodeset RHS.TXT

This will save to the file RHS.TXT a .nodeset statement specifying the solution
at each node.
286

Chapter 8 Convergence, Accuracy and Performance
3. Paste the contents of RHS.TXT to the netlist. Alternatively, include the file using
the .INC statement. (See “Adding Extra Netlist Lines” on page 13 to find out
how to add to a schematic).

If you now repeat the DC analysis, you should now find that the solution is very rapid.
Depending on the nature of your circuit, you may also find that the solution is found
easily even if you modify the circuit. This is not, however, guaranteed.

Transient Analysis

What Causes Non-convergence?

There are a number of reasons for convergence failure in transient analysis but most
have their root in one of the following:

1. The circuit does not have a real and finite solution

2. The circuit contains discontinuities

3. There is insufficient precision available to meet the required tolerance

1. is a circuit problem. A trivial example of 1. is a PN junction biased by a large
voltage. Without any series resistance, the voltage does not need to be very high for the
current in the device to exceed the range of the machine. However, this can also be a
result of more subtle problems. A linear circuit which is unstable can suffer unbounded
growth which will ultimately overflow. This will show as a convergence failure.

An example of 2. is a bistable circuit where the device capacitances are not modelled.
The action of switching state would theoretically occur in zero time, a situation the
simulator cannot be guaranteed to handle.

2. above is the cause of many convergence problems. Some of these are caused by poor
model design. However, this can also be the result of regenerative feedback if there is
no time limiting elements. For example a bistable circuit with no capacitance will
switch state in zero time. Such discontinuous action will often lead to convergence
failure.

3. is common but difficult to diagnose. In some cases it is possible for the effect of a
change in the least significant digits in the calculations to get magnified to such an
extent that they exceed the required tolerance.

Fixes for Transient Non-convergence

1. Type this at the command line:

where

This will list nodes and devices that are causing the convergence problem. If any
nodes are on the top level of your schematic, these will be highlighted. This
should give a clue to the cause of the problem.

2. As with DC operating point, check your circuit. In particular, check that you are
not doing anything which might cause numerical difficulties such as forward
biasing a zero resistance PN junction with a large zero source impedance voltage
source.
287

Simulator Reference Manual
3. Do anything that will prevent small time steps being needed. Gross non-
linearities, regenerative loops and high gain loops all require small time-steps if
not well damped. It may be that you have left out damping components to
simplify the circuit and speed the simulation.

4. Avoid over-idealising. A common misconception is that simplifying a circuit by
removing reactive components such as capacitors will speed up a simulation and
make it easier to converge. Capacitors have a number of stabilising effects on
simulation and are usually beneficial.

5. Avoid using unrealistically large capacitors or inductors and unrealistically small
resistors if at all possible. You should especially avoid such components if non-
grounded.

6. If you have some large capacitors in your circuit, try adding a small amount of
ESR using the built-in capacitor ESR parameter rather than a separate resistor.

7. If all else fails you can try relaxing some of the tolerances. If your circuit does
not have any small (sub-A) currents then set ABSTOL to 1e-9 or 1e-6. You can
also increase VNTOL (default 1e-6) to say 1e-3 if your circuit only has large
voltages. Increasing RELTOL is the very last thing you should try. In our
experience, increasing RELTOL beyond its default value (0.001) is rarely a
reliable solution and can make matters worse.

8. Contact technical support. We don't officially offer a convergence fixing service
and reserve the right to decline help. However, we are always interested in non-
converging circuits and usually we will look at your circuit to see if we can
identify the problem.

DC Sweep

DC sweep is basically a repeated DC operating point and so the issues relating to that
mode also apply to DC sweep. However, if you are sweeping a voltage or current
source, then an altogether better way of dealing with DC sweep problems is to simulate
the DC sweep using transient analysis with a slow ramp.

Using transient analysis to perform DC sweep also resolves problems that can occur
with circuits that have regions where there is more than one stable state e.g. bistables
or schmitt triggers. Consider sweeping the input voltage of a schmitt trigger circuit.
When the input voltage is between the lower and upper thresholds, the circuit has two
stable states and the DC algorithm could find either of them. As each step in a DC
analysis is initialised with the previous step, it will usually find the correct solution but
this is not guaranteed. This means that the output could change state even though the
input has not passed either threshold. This problem doesn't occur in transient analysis
as in this mode the circuit is running as it would in real life.

DC Operating Point Algorithms

SIMetrix uses five alternative strategies to resolve the DC operating point. These are:

1. Junction initialised iteration. This is our name for the standard algorithm
sometimes simply known as ‘DC Iteration’.

2. Source stepping.

3. Diag GMIN stepping.
288

Chapter 8 Convergence, Accuracy and Performance
4. Junction GMIN stepping.

5. Pseudo transient analysis.

These are described in the following sections.

Junction Initialised Iteration

This is the standard algorithm and is sometimes known simply as ‘DC iteration’. Each
semiconductor junction is initialised with a small voltage and iteration then proceeds
until convergence (or otherwise). This method often succeeds and is usually the
quickest. However, the starting point is only a bit better than an educated guess and can
be so far removed from the real solution that it never has a chance of succeeding.
(‘Junction initialised iteration’ is a name we have coined and you may see it referred to
as JI2 elsewhere in this manual and also in messages output by SIMetrix)

Source Stepping

Source stepping. This method - as with all the remaining methods to be described -
belong to a class of convergence strategies known as continuation methods. These all
work by repeating the iterative process while gradually varying some circuit parameter.
The circuit parameter is chosen so that at its start value the solution is known or trivial
and at its final value the solution is the operating point that is required. In source
stepping, all the circuit's power sources are gradually ramped up from zero to their
final value. While at zero, the circuit's solution is trivial; all the voltages and currents
are zero. At the first step, the supplies might be ramped up to 10% of their maximum
and the solution iterates to convergence. Then the supplies are increased and the
process is repeated. At each step the solution is initialised with the previous solution
which, if the steps are small, will be close to the new solution that is required and
convergence will therefore be relative easy to achieve.

This method is quite effective and is included in all SPICE based simulators including
those derived from SPICE2. However the SPICE versions use a fixed step size,
whereas in SIMetrix (since version 2.0), the step size is variable so if a step fails, the
step size is reduced and it tries again.

However, even with an arbitrarily small step size, this method can fail if the circuit
contains some kind of regenerative action. As the supplies are ramped it is possible for
the circuit to abruptly switch from one state to another as in a schmitt trigger. Although
circuits such as schmitt triggers do give difficulty, even circuits that do not have such
elements can also give trouble.

Diagonal GMIN Stepping

In this method, a large conductance term is added to every diagonal entry of the
solution matrix and gradually reduced. This is similar to placing a low value resistor
from every node of the circuit to ground but is by no means equivalent. The high
conductance term (=low resistance) in the matrix effectively swamps non-linearities
and as a result the solution is easy to find. The term is gradually reduced until it is zero.

This method is also effective and sometimes works for circuits for which source
stepping fails. It is included with all SPICE3 derived simulators but, as with source
stepping, the SPICE variants use a fixed step while SIMetrix uses a variable step.
289

Simulator Reference Manual
GMIN stepping suffers from the same problems as source stepping but not always with
the same circuits so it always worth trying both approaches.

The received wisdom has always been that GMIN stepping is more effective than
source stepping. This has not however been borne out by our own research which has
shown the source stepping converges more often and more quickly. For this reason,
SIMetrix attempts source stepping before GMIN stepping. This is the reverse of
SPICE3 and its derivatives.

Junction GMIN Stepping

The junction GMIN stepping method incrementally steps the conductance across
semiconductor junctions. This in effect sweeps the GMIN option parameter.

This method is effective for CMOS IC designs as long as GMIN is implemented as a
conductance between drain and source. This is not the default configuration for
LEVEL 1 to 3 MOSFETs in which GMIN is implemented as two conductances
between the drain and bulk and source and bulk. For other MOSFET models such as
BSIM3 and EKV, the default GMIN is now between source and drain. For designs
containing these devices, Junction GMIN Stepping is the first method attempted after
JI2. For circuits that do not contain such devices, this method is not attempted at all.

Pseudo Transient Analysis

This method finds the solution using transient analysis. In SIMetrix, a transient
analysis is conducted while ramping up all power sources, in effect simulating the
action of switching on the power supplies. This is not the same as source stepping as
the latter is a pure DC method with all reactive components set to zero. Because
reactive components - i.e. capacitors and inductors - are included in transient analysis,
effects such as abrupt changes are damped and occur gradually over a finite time. This
eliminates the problem - described above - that the DC continuation methods suffer
from.

The above assumes, however, that the circuit is well modelled with all reactive
elements correctly specified. With integrated circuit design this is usually the case, but
for discrete circuits frequently is not. Opamp macro models, for example, consist of
many idealised elements that are not always damped by reactive elements. Without
such damping, pseudo transient analysis can fail for the same reason as source and
GMIN stepping. So, SIMetrix automatically adds additional capacitance to the circuit
to prevent this situation from arising.

The end result is a convergence strategy that nearly always succeeds. However, it is
generally the slowest method so in SIMetrix it is, by default, attempted last.

Although pseudo transient analysis is very powerful it is not completely infallible. Its
Achilles Heel is oscillation. Because a transient analysis is being performed it is
possible for the circuit to oscillate. If this happens, pseudo transient analysis can end
up going on forever without ever finding a stable solution. In our experience, however,
this is actually rare. A number of steps are taken to damp oscillators so that even
circuits that are designed to oscillate still succeed with pseudo transient analysis.

SIMetrix provides a number of facilities to inhibit circuit oscillation during pseudo
transient analysis. These are described in “Pseudo Transient Analysis” on page 284.
290

Chapter 8 Convergence, Accuracy and Performance
Controlling DC Method Sequence

You may have a circuit that only succeeds with - say - pseudo transient analysis and so
attempting the other methods just wastes time. In this situation, you can force the
simulator to attempt this method exclusively. To do this you need to set the two
simulator options noOpiter and dcopSequence. noOpiter inhibits the first method
(junction initialised iteration) while dcopSequence controls which and what order the
remaining methods are attempted. The value of dcopSequence consists of any
combination of SOURCE, GMIN, JUNCGMIN and PTA separated by the pipe
symbol: '|'. SOURCE, GMIN, JUNCGMIN and PTA refer respectively to ‘source
stepping’, ‘DIAG GMIN stepping’, ‘Junction GMIN stepping’ and ‘pseudo transient
analysis’. The order in which these words appear in the value of dcopSequence,
determines the order in which the corresponding methods will be attempted. So for
example:

.OPTIONS NOOPITER DCOPSEQUENCE=GMIN|PTA

will force GMIN stepping to be attempted first followed by pseudo-transient analysis.
Junction initialised iteration, junction GMIN stepping and source stepping won't be
attempted at all. Note that PTA must always be the last entry.

Singular Matrix Errors

A singular matrix error occurs when the circuit does not have a unique and finite
solution. For example, a circuit containing a floating capacitor does not have a unique
DC solution as the capacitor can be at any voltage. Also circuits with shorted
inductors, voltage sources or a combination of both will fail with this error.

If you get this error, you must first check your circuit. The simulator will tell you
where the problem is either as a node name or a device name.

If you think you circuit is OK then it is possible that the error is occurring because
during the course of iterating to a solution, some node voltages or device currents
reached very high values and the limited accuracy of the machine made it seem that the
matrix was singular. This can happen with junction initialised iteration. If this is the
case, try setting the option:

.OPTIONS NOOPITER

This will inhibit this mode and the simulator will start with source stepping. This
method, and the others that follow, don't generally suffer from this problem.

Note that the simulation will abort if a singular matrix is detected in junction initialised
iteration. It will not automatically attempt the other methods. This is because, by far
the most common reason for singular matrices is circuit error.

Transient Analysis - ‘Time step too small’ Error

The message:

Timestep too small
291

Simulator Reference Manual
is not actually due to non-convergence. It means that, because of the nature of your
circuit, to achieve the required accuracy, a time step smaller than the minimum
permissible was needed. This can happen if you perform a very long transient analysis
on a circuit with relatively short time constants. If you get this message, you can try
reducing the minimum time step with the MinTimeStep simulator option. The default
value for MinTimeStep is 1e-9*max time step and the max time step defaults to (Tstop-
Tstart)/50 where Tstop and Tstart are respectively the stop and start times of the
transient analysis. This option can be set in the user interface. See “Time Step” on
page 185 of the User’s Manual.

Accuracy and Integration Methods

A Simple Approach

The accuracy of the simulation can be a complicated subject. So we will start with
simple advice. If you wish to increase the accuracy of a simulation, reduce the value of
RELTOL. This defaults to 0.001 so to reduce it to say 1e-5 add the following line to the
netlist:

.OPTIONS RELTOL=1e-5

(The setting of RELTOL is supported by the front end. See User's Manual for details.)

The simulation will run slower. It might be a lot slower it might be only slightly slower.
In very unfortunate circumstances it might not simulate at all and fail with a
convergence error.

Conversely, you can speed up the simulation by increasing RELTOL, but we don't
recommend it. Increasing RELTOL beyond its default value often degrades accuracy to
an unacceptable level.

To increase speed with a reasonably controlled loss of precision, increase POINTTOL
to 0.1 or even 1.0 but no higher.

Iteration Accuracy

For DC and transient modes, the simulator essentially makes an approximation to the
true answer. For DC analysis an iterative method is used to solve the non-linear
equations which can only find the exact answer if the circuit is linear. The accuracy of
the result for non-linear circuits is determined by the number of iterations; accuracy is
improved by performing more iterations but obviously this takes longer. In order to
control the number of iterations that are performed an estimate is made of the error by
comparing two successive iterations. When this error falls below a predetermined
tolerance, the iteration is deemed to have converged and the simulator moves on the
next step or completes the run. Most SPICE simulators use something similar to the
following equations to calculate the tolerance:

For voltages:
TOL = RELTOL * instantaneous_value + VNTOL

For currents:
TOL = RELTOL * instantaneous_value + ABSTOL
292

Chapter 8 Convergence, Accuracy and Performance
"instantaneous_value" is the larger of the current and previous iterations. VNTOL has
a default value of 1V so for voltages above 1mV, RELTOL dominates. ABSTOL has
a default of 1pA so for currents above 1nA, RELTOL dominates.

The above method of calculating tolerance works fine for many circuits using the
default values of VNTOL and ABSTOL. However, SPICE was originally designed for
integrated circuit design where voltages and currents are always small, so the default
values of ABSTOL and VNTOL may not be appropriate for - say - a 100V 20A power
supply. Suppose, that such a PSU has a current that rises to 20A at some point in the
simulation, but falls away to zero. When at 20A it has a tolerance of 20mA but when it
falls to zero the tolerance drops to ABSTOL which is 1pA. In most situations the 1pA
tolerance would be absurdly tight and would slow down the simulation. Most other
SPICE products recommend increasing ABSTOL and VNTOL for PSU circuits and
indeed this is perfectly sound advice. However, In SIMetrix the tolerance equation has
been modified to make this unnecessary in most cases. Here is the modified equation:

For voltages:
TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) + VNTOL

For currents:
TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) +
ABSTOL

peak_value is the magnitude of the largest voltage or current encountered so far for the
signal under test. POINTTOL is a new tolerance parameter and has a default value of
0.001. So for the example we gave above, peak_value would be 20 and when
instantaneous_value falls to zero the tolerance would be:

0.001 * MAX(20 * 0.001, 0) + 1p = approx. 20A

20A is a much more reasonable tolerance for a signal that reaches 20A.

The above method has the advantage that it loosens the tolerance only for signals that
actually reach large values. Parts of a circuit that only see small voltages or currents -
such as the error amplifier of a servo-controlled power supply - would still be
simulated with appropriate precision.

POINTTOL can be increased to improve simulation speed. It is a more controlled
method than increasing RELTOL. POINTTOL can be raised to 0.1 or even 1.0 but
definitely no higher than 1.0.

Time Step Control

The tolerance options mentioned above also affect the time step control algorithm used
in transient analysis. In SIMetrix, there are three mechanisms that control the time
step, one of which has to be explicitly enabled. These are:

1. Iteration time step control

2. LTE time step control

3. Voltage delta limit

Item 3 above is inactive unless explicitly enabled using the MAXVDELTAREL option
setting. See below for details.
293

Simulator Reference Manual
Iteration Time Step Control

Iteration control reduces the time step by a factor of 8 if convergence to the specified
accuracy cannot be achieved after 10 iterations. (10 by default but can be changed with
ITL4 option). If convergence is successful, the time step is doubled. As this
mechanism is controlled by the success or otherwise of the iteration it is also affected
by the same tolerance options described in the above section about iteration accuracy.

LTE Time Step Control

The theory behind this method is beyond the scope of this manual but essentially it
controls the accuracy of the numerical integration method used to model reactive
devices such as inductors and capacitors. These devices are governed by a differential
equation. It is not possible in a non-linear circuit to solve these differential equations
exactly so a numerical method is used and this - like the iterative methods used for
non-linear devices - is approximate. In the case of numerical integration, the accuracy
is determined by the time step. The smaller the time step the greater the accuracy but
also the longer the simulation time.

The accuracy to which capacitors are simulated is controlled by RELTOL, POINTTOL
and two other options namely TRTOL and CHGTOL. The latter is a charge tolerance
and has a similar effect to VNTOL and ABSTOL but instead represents the charge in
the capacitor. It's default value is 1e-14 which, like ABSTOL and VNTOL is
appropriate for integrated circuits but may be too low for PSU circuits with large
capacitors. However, the peak detection mechanism controlled by POINTTOL
described in the above section also works for the LTE time step control algorithm and
it is therefore rarely necessary to alter CHGTOL.

TRTOL is a dimensionless value and has a default value of 7. It affects the overall
accuracy of the numerical integration without affecting the precision of the iteration.
So reducing TRTOL will increase the accuracy with which capacitors and inductors are
simulated without affecting the accuracy of the iterative method used to simulate non-
linear elements. However, in order for the simulation of reactive devices to be
accurate, the non-linear iteration must also be accurate. So, reducing TRTOL much
below unity will result in a longer simulation time but no improvement in precision.
Increasing TRTOL to a large value, however, may be appropriate in some
circumstances where the accuracy to which reactive devices are simulated is not that
important. This may be the case in a circuit where there is an interest in the steady state
but not in how it was reached.

Inductors are controlled by the same tolerances except CHGTOL is replaced by
FLUXTOL. This defaults to 1e-11.

The default LTE time step algorithm used in SIMetrix is slightly different to that used
by standard SPICE. The standard SPICE variant is also affected by ABSTOL and
VNTOL. The SIMetrix algorithm controls the time step more accurately and as a result
offers better speed-accuracy performance.

Voltage Delta Limit

This places a limit on the amount of change allowed in a single timestep for each node.
This limit is governed by the option setting MAXVDELTAREL and
MAXVDELTAABS and is included to overcome a problem that can cause false
clocking of flip-flops. The limit can be calculated from:
294

Chapter 8 Convergence, Accuracy and Performance
MAXVDELTAABS + MAXVDELTAREL*(node_voltage)

where node_voltage is the larger of the node voltage at current time step and the node
voltage at the previous time step. The above is calculated for all voltage nodes. If the
change in voltage exceeds this limit, the time step is cut back.

The above mechanism is not enabled if MAXVDELTAREL is zero or less and
MAXVDELTAREL is zero by default.

Setting MAXVDELTAREL to a value of about 0.4 will usually fix problems of false
clocking in flip-flops. However, this will slow down the simulation slightly and it is
not recommended that this setting is used in circuits that do not contain flip-flops.

Accuracy of AC analyses

The small-signal analysis modes .AC, .TF and .NOISE do not use approximate
methods and their accuracy is limited only by the precision of the processor's floating
point unit. Of course the DC operating point that always precedes these analysis modes
is subject to the limitations described above. Also, the device models used for non-
linear devices are also in themselves approximations. So these modes should not be
seen as exact but they are not affected by any of the tolerance option settings.

Summary of Tolerance Options

RELTOL

Default = 0.001. This affects all DC and transient simulation modes and specifies the
relative accuracy. Reduce this value to improve precision at the expense of simulation
speed. We do not recommend increasing this value except perhaps to run a quick test.
In any case, you should never use a value larger than 0.01.

POINTTOL

Proprietary to SIMetrix. Default = 0.001. Can increase to a maximum of 1.0 to
improve speed with loss of precision. Reduce to 0 for maximum accuracy but note this
may just slow down the simulation without really improving precision where it is
needed.

ABSTOL

Default = 1pA. This is an absolute tolerance for currents and therefore has units of
Amps. This basically affects the tolerance for very low values of current. Sometimes
worth increasing to resolve convergence problems or improve speed for power circuits.

VNTOL

Default = 1µV. Same as ABSTOL but for voltages.

TRTOL

Default = 7. This is a relative value and affects how accurately charge storage elements
are simulated. Reduce it to increase accuracy of reactive elements but there is no
295

Simulator Reference Manual
benefit reducing below about 1.0. In circuits where there is more interest in the steady
state rather than how to get there, simulation speed can be improved by increasing this
value.

CHGTOL

Default = 1e-14. Minimum tolerance of capacitor charge. Some convergence and speed
improvement may be gained by increasing this for circuits with large capacitors.
Generally recommended to leave it alone.

FLUXTOL

Default = 1e-11. Same as CHGTOL except applied to inductors.

Integration Methods - METHOD option

SIMetrix, along with most other SPICE products use three different numerical
integration methods to model reactive elements such as capacitors and inductors.
These are Backward Euler, Trapezoidal Rule and Gear. Backward Euler is used
unconditionally at various times during the course of a simulation but at all other times
the method used is controlled by the METHOD option (as long as ORDER is set to 2
or higher - see below).

The METHOD option can be set to TRAP (trapezoidal - the default) or GEAR. Gear
integration can solve a common problem whereby the solution seems to oscillate
slightly. An example is shown below.

The grey curve was simulated with the default trapezoidal integration method whereas
the black used Gear integration. Note that gear integration introduces a slight
overshoot. This is a common characteristic. To find out whether such overshoots are a
consequence of the integration or are in fact a real circuit characteristic, you should

Time/µSecs 200nSecs/div

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

µA

3

3.5

4

4.5

5

5.5

6

6.5

7

1: :q1#b 2: tran2:q1#b
296

Chapter 8 Convergence, Accuracy and Performance
simulate the circuit with much smaller values of RELTOL (see above). It is also
suggested that you switch back to trapezoid integration when using tight tolerances;
the oscillating effect shown above will vanish if the tolerance is tight enough.

Note, you should not use Gear integration if you are simulating strongly resonant
circuits such as oscillators. Gear integration introduces a numerical damping effect
which will cause resonant circuits to decay more rapidly than they should. For
example:

The above curves are the result of simulating a simple LC circuit that is completely
undamped. The top trace was the result of Gear integration and the bottom, trapezoidal.
The bottom curve is correct and agrees with theory. The top curve is inaccurate. If the
analysis was done with Gear integration but with a smaller value of RELTOL, the
damping effect would be less, so for all methods the result is ultimately accurate if the

-30

-20

-10

0

10

20

Time/µSecs 2µSecs/div

0 2 4 6 8 10
-30

-20

-10

0

10

20
297

Simulator Reference Manual
tolerance is made small enough. But trapezoidal gives accurate results without tight
values of RELTOL.

ORDER option

This defaults to 2 and in general we recommend that it stays that way. Setting it to 1
will force Backward Euler to be used throughout which will degrade precision without
any speed improvement. It can be increased up to a value of 6 if METHOD=GEAR but
we have not found any circuits where this offers any improvement in either speed or
precision.

Using Multiple Core Systems

Single Step Runs

SIMetrix will make use of multiple core processors to speed up simulations. It does
this by dividing the work for calculating device equations amongst multiple threads
each running on its own core. For example, a circuit with 100 transistors will need the
equations governing the transistors to be calculated for each iteration. With a 4 core
system, each core can be assigned the equations for 25 transistors to be calculated in
parallel which will allow the iteration to complete in less time.

However, only the device equation calculation is subject to multiple core execution.
There are many other tasks that are performed during a simulation run that remain
single-threaded, that is executed in sequence on a single core. For this reason multiple
cores will not give a speed up equal to the number of cores or even anything close.

Using Multiple Cores for Single Step Runs

SIMetrix will automatically choose how many cores to use for the simulation. For
simple circuits it will use a single core and beyond a certain level of complexity it will
use all the cores available on a single chip. So if you have a 4-core machine where all 4
cores are implemented on a single processor chip, SIMetrix will use all 4 cores as long
as the circuit complexity is sufficient to justify it.

If you have a machine with, for example, 8 cores implemented using 2 4-core
processor ICs, SIMetrix will use just one of the ICs so therefore 4 cores.

You can override the number of cores using the mpnumthreads .OPTIONS setting.
E.g.:

.OPTIONS MPNUMTHREADS=2

will force 2 cores to be used as long as the computer system does actually have 2 cores.
SIMetrix will not use more threads than there are physical cores available.

Be aware that hyperthreaded logical processors are not counted as a physical processor.
So if you have 4 physical cores and 8 logical cores implemented using hyperthreading,
SIMetrix will use a maximum of 4 cores.
298

Chapter 8 Convergence, Accuracy and Performance
Multi-core Multi-step Simulation

Multiple core execution does give a very substantial speed improvement when applied
to multi-step analyses. This is covered in the User’s Manual, Chapter 7, Using
Multiple Cores for Multi-step Analyses.

Matrix Solver

To simulate a circuit, SIMetrix formulates a set of linear equations from the non-linear
equations that govern the devices in the circuit. This is part of an iterative algorithm
that is repeated successively to converge on the solution to the non-linear system. The
linear system of equations is solved using a matrix solver.

SIMetrix has two matrix solvers and you can choose between them. The two solvers
are:
1. Sparse 1.3 developed by Kenneth Kundert and which is the solver supplied with

SPICE 3

2. KLU developed by a research group at the University of Florida under Prof. Tim
Davis. This was developed for circuit simulation and was moulded to perform
well for the type of matrix that circuit simulators tend to generate. The solver
makes use of more modern techniques than the original SPICE3 solver which
was developed in the 1980s.

SIMetrix uses KLU by default and for most applications this is the better choice. For
circuits with more than about 500 nodes it is almost always faster for the following
reasons:

1. It has uses superior ordering algorithms. The matrix that arises from circuit
simulation problems is sparse which means that nearly all terms are zero.
Exploiting sparsity to greatest effect depends on the row and column ordering.
KLU makes use of modern research to produce superior ordering to Sparse 1.3

2. The factorisation algorithm is superior

3. It can be reordered efficiently and rapidly. The optimum matrix ordering that is
ideal for DC and long time steps is often different to that needed for small time
steps. Sparse 1.3 can not be reordered very efficiently and tends to use the same
ordering throughout the simulation. KLU can be reordered much more frequently
providing optimal ordering at all times

Although KLU is usually the best choice, Sparse 1.3 can give better results for small
circuits. To change the matrix solver use this option:

.options spsolver=solver

Where solver is:

KSPARSE for Sparse 1.3

or

KLU for KLU

Currently .SENS analyses always use Sparse 1.3 regardless of the spsolver setting.
299

Simulator Reference Manual
Chapter 9 Digital Simulation

Overview

As well as an analog simulator, SIMetrix incorporates an event driven digital simulator
tightly coupled to the analog portion. This system can rapidly and accurately simulate
mixed signal circuits containing both analog and digital components. Of course, an
analog only simulator can simulate a mixed signal circuit using digital models
constructed from analog components, but this approach is slow. The advantage of this
mixed-mode approach is that it is dramatically faster, typically in the order of 100
times for pure digital circuits.

The SIMetrix mixed mode simulator is based on the XSPICE system developed by the
Georgia Technical Research Institute. Although based on XSPICE, SIMetrix features
many enhancements over the original system. See “Enhancements over XSPICE” on
page 324 for details of these improvements.

If you only use digital models supplied in the device library, then you don't need to
know much about the digital simulator in order to use it. Just select the devices you
need from the parts browser and simulate in the normal way. This chapter describes
some of the inner workings of the simulator including how it interfaces to the analog
system. More importantly, perhaps, this chapter also describes how you can design
your own digital models.

Logic States

The digital simulator is described as ‘12-state’ which means that a digital signal can be
in 1 of 12 states. These 12 states are combined from 3 levels and 4 strengths as follows:

Logic levels HIGH and LOW are self-explanatory. UNKNOWN means the signal
could be either HIGH or LOW but which is not known at this stage. The start up state
of a flip-flop is an example of an UNKNOWN state. Strength refers to the driving
force behind the signal. STRONG is the highest with HI-IMPEDANCE the lowest. It
is used to resolve conflicts when two outputs are connected together. For example
consider a LOW-RESISTIVE signal (as possessed by a pull-down resistor) connected
to a HIGH-STRONG signal There is a conflict between the two logic levels but as they
are different strengths, the stronger wins and therefore the resulting level is HIGH.

Logic levels Strengths

HIGH STRONG

LOW RESISTIVE

UNKNOWN HI-IMPEDANCE

UNDETERMINED
300

Chapter 9 Digital Simulation
State resolution table

The following table defines how a state is decided when two outputs are connected:

0S = LOW-STRONG
1S = HIGH-STRONG
XS = UNKNOWN-STRONG
0R = LOW-RESISTIVE
1R = HIGH-RESISTIVE
XR = UNKNOWN-RESISTIVE
0Z = LOW-HI-Z
1Z = HIGH-HI-Z
XZ = UNKNOWN-HI-Z
0U = LOW-UNDETERMINED
1U = HIGH-UNDETERMINED
XU=UNKNOWN-UNDETERMINED

Analog to Digital Interfaces

At the simulator level, there are two types of node namely analog and digital and they
cannot be connected together. At the netlist level it is possible to connect analog
components to digital outputs and inputs. When SIMetrix sees an analog component
connected to a digital signal, it automatically interconnects them using an interface
bridge. It will use an analog-digital bridge to connect an analog signal to a digital input
and a digital-analog bridge to connect to a digital output. If you connect an analog
component to a signal which connects to both digital inputs and outputs both types of
bridge will be used and the digital inputs and outputs will be separated from each other
as illustrated in the following diagrams.

0S 1S XS 0R 1R XR 0Z 1Z XZ 0U 1U XU

0S 0S XS XS 0S 0S 0S 0S 0S 0S 0S XS XS

1S XS 1S XS 1S 1S 1S 1S 1S 1S XS 1S XS

XS XS XS XS XS XS XS XS XS XS XS XS XS

0R 0S 1S XS 0R XR XR 0R 0R 0R 0U XU XU

1R 0S 1S XS XR 1R XR 1R 1R 1R XU 1U XU

XR 0S 1S XS XR XR XR XR XR XR 1U XU XU

0Z 0S 1S XS 0R 1R XR 0Z XZ XZ 0U XU XU

1Z 0S 1S XS 0R 1R XR XZ 1Z XZ XU 1U XU

XZ 0S 1S XS 0R 1R XR XZ XZ XZ XU XU XU

0U 0S XS XS 0U XU XU 0U XU XU 0U XU XU

1U XS 1S XS XU 1U XU XU 1U XU XU 1U XU

XU XS XS XS XU XU XU XU XU XU XU XU XU
301

Simulator Reference Manual
Circuit entered in schematic editor

Circuit that is actually simulated

One problem with the above approach is that the A-D and D-A bridges introduce an
additional delay to the signal path which would therefore alter the performance of the
digital system even if the analog node does not present any significant load. This is
overcome by assigning a negative load to the input of the digital bridge which in effect
reduces the delay of the driving gate. In the above example U2 has a negative input
load which reduces the delay of U3.

VN

VP

X1

TL072

U4
HC74

QN

QD

RST

SET

HC00

U3

VCC

VCC

HC00

U3

U4
HC74SET

RST

D Q

QN

X1

TL072

VP

VN

D_A

U2 U1

A_D

Analog-digital bridges implicitly connected by simulator
302

Chapter 9 Digital Simulation
How A-D Bridges are Selected

When SIMetrix implicitly places an AD bridge in a circuit, it must choose an
appropriate model for the bridge. All AD bridges are based on DAC_BRDIGE and
ADC_BRIDGE models described in “Analog-Digital Interface Bridge”, and “Digital-
Analog Interface Bridge” starting page 190. The model is chosen according to the
FAMILY parameter assigned to the digital device to which the bridge is connected.
The FAMILY parameter along with the associated OUT_FAMILY and IN_FAMILY
parameters are explained more fully in “Logic Families” on page 303. Basically the
FAMILY parameter specifies the logic family to which the device belongs e.g. ‘HC’
for high speed CMOS.

The name of the model used to interconnect digital to analog is always of the form:

family_name_dac

and to interconnect analog to digital

family_name_adc

For example if the family name is HC the D-A bridge is called HC_DAC. There is a
selection of A-D and D-A bridges in the model library supplied with SIMetrix. (In
BRIDGES.LB).

Logic Families

The digital simulator only knows about the 12 logic states described in section “Logic
States” on page 300, It doesn't know anything about threshold voltages or output
impedances and consequently cannot directly handle the effects of interconnecting
devices from different logic families. It does however feature a mechanism of
determining the level of compatibility between families and will raise an error if
incompatible devices are interconnected. For example, ECL and high speed CMOS
operate at completely different thresholds and cannot be connected except via a special
interface gate. SIMetrix knows this so that if you attempt to connect such devices, an
error message will be displayed and the simulation will not run. Conversely, it is
perfectly OK to drive an LSTTL input from an HC output and SIMetrix will operate
normally if you do so. If you drive an HC input from an LSTTL output SIMetrix will
issue a warning as, although this may work in practice, it cannot be guaranteed to do so
under all circumstances.

Another problem arises when connecting inputs from different logic families together.
SIMetrix deals with this by treating groups of inputs as if they were all from the same
logic family provided they are compatible. This selected logic family is then used to
resolve any output-input conflict as described above. It is also used to select an analog-
digital interface bridge as described in “Analog to Digital Interfaces” on page 301

Groups of outputs from different families are dealt with in the same way as inputs
described above.

SIMetrix knows how to resolve these situations by referring to a set of three tables
called the ‘Logic Compatibility Tables’. A standard set of tables is built in to the
simulator but they can also be redefined. See “Logic Compatibility Tables” on
page 304.
303

Simulator Reference Manual
Logic Family Model Parameters.

There are three model parameters used to specify the logic family to which a device
belongs. These are:

The parameters are text strings. Any name may be used that is defined in the logic
compatibility tables but you must not use the underscore character in a family name.
The families supported by the internal tables are listed in “Supported Logic Families”
on page 306

The underscore character is used to define a sub-family that has the same
characteristics as the main family as far as logic compatibility is concerned but which
will call a different interface bridge when connected to an analog node. This is used to
define schmitt trigger devices such as the 74HC14. In an all-digital circuit this behaves
exactly like a normal inverter with a slightly longer delay. When the input is connected
to an analog system an interface bridge with the appropriate hysteresis is called up
instead of the normal interface.

Logic Compatibility Tables

As explained in the above section, there are three of these. Each table has a row and
column entry for each of the logic families supported. These are:

• Resolve In-Out table. Decides what to do when an output is connected to an input
from a different family. Possible responses are OK, ERR (error - not permissible)
and WARN (OK but give warning to user)

• Resolve In-In table. Decides how to treat the situation when two inputs from
dissimilar families are connected. As described above SIMetrix must treat a
group of inputs connected together as all belonging to the same logic family for
the purpose of deciding an analog interface bridge (see “Analog to Digital
Interfaces” on page 301) and to resolve in-out family conflicts. Possible
responses are ROW, COLUMN and ERR. ROW means that the family defining
the ROW entry has priority and COLUMN means that the family defining the
COLUMN entry has priority. ERR means that it is an error to interconnect these
two inputs. You can also enter OK which signifies that the two families are
equivalent and it doesn't matter which is chosen. Currently this response is
exactly equivalent to ROW.

• Resolve Out-Out table. Works the same way as the Resolve In-In table but used
to define output priorities.

The tables can be redefined by specifying a file containing the new definition. If
running in GUI mode a new file can be specified at any time using the
ReadLogicCompatibility command (see User's Manual or Script Reference Manual).

Parameter name Description

IN_FAMILY Family for inputs

OUT_FAMILY Family for outputs

FAMILY Family for both inputs and outputs if IN_FAMILY/
OUT_FAMILY not specified
304

Chapter 9 Digital Simulation
It can also be specified as the configuration setting CompatTable. The format of this
file is described in the following section.

Logic Compatibility File Format

For an example of a compatibility table, see the file COMPAT.TXT which you will
find in the SCRIPT directory. This file is actually identical to the built-in definitions
except for the UNIV family which cannot be redefined.

The file format consists of the following sections:

1. Header

2. In-Out resolution table

3. In-In resolution table

4. Out-Out resolution table

Header

The names of all the logic families listed in one line. The names must not use the
underscore ('_') character.

In-Out resolution table:

A table with the number of rows and columns equal to the number of logic families
listed in the header. The columns represent outputs and the rows inputs. The entry in
the table specifies the compatibility between the output and the input when connected
to each other. The entry may be one of three values:

In-In resolution table

A table with the number of rows and columns equal to the number of logic families
listed in the header. Both column and rows represent inputs. The table defines how
inputs from different families are treated when they are connected. The entry may be
one of four values:

Value Meaning

OK Fully compatible

WARN Not compatible but would usually function. Warn user
but allow simulation to continue.

ERR Not compatible and would never function. Abort
simulation.
305

Simulator Reference Manual
Out-out resolution table

A table with the number of rows and columns equal to the number of logic families
listed in the header. Both column and rows represent outputs. The table defines how
outputs from different families are treated when they are connected. The entry may be
one of four values:

Supported Logic Families

The following logic families are supported by the internal Logic Compatibility Tables.

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn't matter. (Currently identical to ROW)

ERR Incompatible, inputs cannot be connected.

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn't matter. (Currently identical to ROW)

ERR Incompatible, outputs cannot be connected.

Family name Description

TTL TTL - 74 series

HC High speed CMOS - 74HC series

HCT TTL compatible High speed CMOS - 74HCT series

FAST FAST TTL - 74F series

LS Low power schottky TTL - 74LS series

ALS Advanced low power schottky TTL - 74ALS series

4000-5 4000 series CMOS - 5V operation

4000-10 4000 series CMOS - 10V operation

4000-15 4000 series CMOS - 15V operation

ECL10K ECL 10K series
306

Chapter 9 Digital Simulation
Universal Logic Family

The internal tables support the concept of a ‘Universal logic family’. This is called
UNIV and can connect to any logic family without error. This is the default if no
FAMILY parameter is supplied.

Internal Tables

The internal tables are documented in the on-line help system. Refer to topic “Internal
Tables” which is listed as a keyword in the index tab.

Load Delay

Overview

The digital simulator includes mechanisms to model the delay introduced when an
output is loaded. Two sources of delay are provided for, namely ‘input delay’ and ‘wire
delay’. Input delay is determined by the capacitive input while wire delay is an
additional delay caused by the capacitance of the interconnection.

Both input delay and wire delay are affected by the driving outputs ‘resistance’.

Output Resistance

Most devices that have digital outputs have three parameters to define output
resistance. Note that the resistance we are referring to here is not an actual analog
resistance but a conceptual value that when multiplied by load capacitance provides a
delay value.

The three output resistance parameters are: out_res, out_res_pos, out_res_neg.
out_res_pos and out_res_neg define the output resistance for positive and negative
transitions respectively. out_res provides a default value for out_res_pos and
out_res_neg.

Input Delay

Most digital inputs include an ‘input_load’ capacitance parameter. The total input
delay is obtained by multiplying the sum of all connected input capacitances by the
driving output’s output resistance as described above.

ECL10KE ECL Eclipse series

AC Advanced CMOS - 74AC series

ACT TTL compatible Advanced CMOS - 74ACT series

FORCE5 Used for 5V VCC rails.

UNIV Universal family - see below

Family name Description
307

Simulator Reference Manual
Wire Delay

Wire delay is derived from the number of connected inputs following a non-linear
relationship defined in a look-up table.

Defining Look-up Table

The wire delay look-up table must be defined in a file containing pairs of values with
one pair per line. The first value in the pair is the number of connections and the
second is the capacitance. For example:

0 0
1 0
2 1e-12
5 10e-12
10 30e-12

Linear interpolation is used to derive missing values.

To specify the wire table used for a simulation, add the line:

.OPTIONS WireTable=filename

where filename is the path of the wire table file.

Digital Model Libraries

Using Third Party Libraries

The SIMetrix digital simulator is based on XSPICE and all the XSPICE digital devices
have been implemented. Virtually all of these have been enhanced in a number of ways
but all remain backward compatible with the original XSPICE. Consequently any
100% XSPICE compatible digital model will work with SIMetrix.

Arbitrary Logic Block - User Defined Models

Overview

The arbitrary logic block is an internal component that can be defined to perform any
logic function. Using a simple descriptive language it is possible to define
combinational logic elements, synchronous and asynchronous registers as well as look-
up table (ROMs) and arrays (RAMs).

Each ALB device is defined as a normal .MODEL statement which refers to a separate
file containing the logic description. This section is mostly concerned with the
descriptive language used in the definition file.

An Example

We start with a simple example. The following is a description of a simple 8 bit
synchronous counter. (This definition would be put into a file referred to in a .MODEL
308

Chapter 9 Digital Simulation
statement. This is described later). A circuit using this model is supplied as an
example. See EXAMPLES/ALB_Examples/count.sch

PORT (DELAY = 10n) CountOut out[0:7] ;
EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;
Count = Count + 1 ;
CountOut = count ;

We will go through this line by line.

The first line:

PORT (DELAY = 10n) CountOut out[0:7] ;

is a PORT statement and in this case defines the characteristics of an output.

(DELAY = 10n)

says that the output delay is 10nS that is the actual output pins will change state 10nS
after the output is assigned.

CountOut

names the output CountOut.

out[0:7]

defines the port as an output and specifies the actual pins used on the device. This
specifies the first 8 pins on the output port. There are two sets of pins on an ALB one
assigned for inputs and referred to as "in[a:b]" and the other assigned for outputs and
referred to as "out[a:b]". The line ends in a semi-colon which terminates the statement.
All statements must end in a semi-colon.

The next line:

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

defines an edge triggered register.

CLOCK=in[0]

 specifies the pin used for the clock (it must always be an input pin). This is always
positive edge triggered.

DELAY=5n

This is the clock to output delay. (See illustration below)

WIDTH=8

This specifies the width of the register i.e. 8 bits

The next line:

Count = Count + 1 ;
309

Simulator Reference Manual
defines the operation to be performed at each clock edge. In this case the value in the
register is simply incremented by one. When it reaches 255 it will reset to 0.

The final line

CountOut = count ;

defines what appears at the output. This says that the output equals the count register.

The following diagram illustrates the internal structure of the counter.

Reset Count at 200

We will now make a small modification to the counter so that the counter only counts
up to 199 before resetting back to zero. Change the line:

Count = Count + 1 ;
to:

Count = Count==199 ? 0 : Count + 1 ;

This says ‘If the count equals 199 set to zero otherwise increment by one’. As before,
this will happen on each clock edge.

Add an Asynchronous Reset

The logic definition language supports the addition of asynchronous controls to
synchronous registers. Here we will add an asynchronous reset. The complete
definition becomes:

PORT (DELAY = 10n) CountOut out[0:7] ;
PORT Reset in[1] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count := !Reset ? 0 ;
Count = Count==199 ? 0 : Count + 1 ;

CountOut = count ;

To add the reset signal we have to add two lines to the definition. The first:

PORT Reset in[1] ;

CLOCK IN

Delay=5n
Edge triggered register

D7

D6

D5

D4

D3

D2

D1

D0

Delay=10n
Output stage

D7

D6

D5

D4

D3

D2

D1

D0

A7

A6

A5

A4

A3

A2

A1

A0
310

Chapter 9 Digital Simulation
defines the signal pin to be used for the reset and the second:

Count := !Reset ? 0 ;

defines the action to be taken. This is an asynchronous action statement. The '!' means
NOT so the line says ‘If Reset is NOT TRUE (i.e. low) set the count to zero otherwise
do nothing’. Asynchronous action statements are always of the form:

register_name := condition ? action ;

The ':' signifies that the statement is asynchronous and that the action should happen
immediately.

Example 2 - A Simple Multiplier

PORT (DELAY=10n) MultOut out[0:7] ;
PORT in1 in[0:3] ;
PORT in2 in[4:7] ;

MultOut = in1*in2 ;

The above defines a simple combinational circuit, that of a 4X4 digital multiplier. The
inputs in1 and in2 are treated as 4 bit unsigned values so if both are zero the output will
be zero and if both are 1111 (i.e. 15) the result will be 11100001 (i.e. 225). See the
circuit EXAMPLES/ALB_Examples/Mult.sch.

Example 3 - A ROM Lookup Table

The following definition is that of a lookup table to define a sine wave:

PORT (DELAY=10n) ROMout out[0:7] ;
PORT input in[0:7] ;

READONLY (WIDTH=8) ROM[256] =

128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162,
165, 168, 171, 174, 176, 179, 182, 185, 188, 191, 193, 196,
199, 201, 204, 206, 209, 211, 213, 216, 218, 220, 222, 224,
226, 228, 230, 232, 234, 236, 237, 239, 240, 242, 243, 245,
246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 254, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254,
253, 252, 252, 251, 250, 249, 248, 247, 246, 245, 243, 242,
240, 239, 237, 236, 234, 232, 230, 228, 226, 224, 222, 220,
218, 216, 213, 211, 209, 206, 204, 201, 199, 196, 193, 191,
188, 185, 182, 179, 176, 174, 171, 168, 165, 162, 159, 156,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118,
115, 112, 109, 106, 103, 99, 96, 93, 90, 87, 84, 81, 79, 76,
73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39, 37,
35, 33, 31, 29, 27, 25, 23, 21, 19, 18, 16, 15, 13, 12, 10,
9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16,
18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46,
49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76, 79, 81, 84, 87,
90, 93, 96, 99, 103, 106, 109, 112, 115, 118, 121, 124 ;

ROMout = ROM[input] ;
311

Simulator Reference Manual
See the example circuit EXAMPLES/ALB_Examples/SineLookUp.sch

Example 4 - D Type Flip Flop

The following is the definition for the 74X74 Dtype flip flop supplied with the
standard SIMetrix model library. This model is somewhat more complicated as it
models a number of timing artefacts such as setup time and minimum clock width.
Each line below has been annotated to describe its function. Full details are explained
in the following sections.

// Input port definitions
PORT D in[0] ; // D input
PORT CK in[1] ; // Clock
PORT SR in[2:3] ; // Set/reset inputs. r bit 3 s bit 2

PORT out out[0:1] ; // Outputs Q and !Q

// Edge triggered register.
// HOLD is hold time i.e. time after clock edge that data
// must remain stable. Setup time is implemented by
// delaying the D input

// MINCLOCK is minimum clock width.
// USER[n] references values supplied in the .MODEL statement
// The final '=2' initialise the register with the value 2
// i.e. Q=0 and Q!=1
EDGE (WIDTH=2, DELAY=USER[4], HOLD=USER[2], MINCLOCK=USER[3],
CLOCK=in[1]) DTYPE=2;

// COMB defines a combinational register. This is effectively
// a delay element. These delay the D input (to implement
// setup time) and the set/reset inputs to implement minimum
// set and reset times
COMB (DELAY=USER[0], WIDTH=1) D_DEL ;
COMB (DELAY=USER[1], WIDTH=2) SR_DEL ;

// These assign the combinational registers
SR_DEL = SR ;
D_DEL = D ;

// asynchronous action
DTYPE := SR_DEL==1||SR_DEL==2 ? (SR_DEL==2 ? 1 : 2) ;

// synchronous action
DTYPE = D_DEL ? 1 : 2 ;

// Both outputs are forced high if S and R are both active
// Output will be restored to previous value when one of
// S and R becomes inactive
out = SR_DEL==0 ? 3 : DTYPE ;

Device Definition - Netlist Entry & .MODEL Parameters

Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n] model_name
312

Chapter 9 Digital Simulation
+ : parameters

Connection details

Instance parameters

Model format

.MODEL model_name d_logic_block parameters

Model parameters

Name Description Flow Type

in Input in d

out Output out d

Name Description Type

trace_file Trace file string

user User device parameters real vector

Name Description Type Default Limits Vector
bounds

file Definition file name string none none n/a

def Definition string none none n/a

out_delay Default output delay real 1n 1e-12 -


n/a

reg_delay Default internal
register delay

real 1n 0 -  n/a

setup_time Default level
triggered setup time

real 0 0 -  n/a

hold_time Default edge
triggered hold time

real 0 0 -  n/a

min_clock Default minimum
clock width

real 0 0 -  n/a

trace_file Trace log file string none n/a

user User defined
parameters

real
vector

none none none

user_scale Scale of user values real 1 0 -  n/a

input_load Input load value (F) real 1p none n/a
313

Simulator Reference Manual
Notes

Usually the logic block definition would be placed in a file referred in the FILE
parameter. Alternatively the definition may be placed directly in the .MODEL
statement as the value of the DEF parameter. In this case the definition must be
enclosed in quotation marks (").

The USER_SCALE parameter scales all values found in the USER parameter.

Language Definition - Overview

The following sections describe the full details of the arbitrary logic block language.

All logic definitions are divided into two sections. The first contains the ports and
register definitions and the second section consists of the assignment statements. (The
first section can be empty in very simple cases).

Language Definition - Constants and Names

Constants follow the usual rules. Any decimal number with optional sign and exponent
or engineering suffix is permitted. In addition, numbers in hexadecimal are also
allowed. The format is the same as for the 'C' programming language i.e. prefixed with
'0X'. E.g.:

0X10 = 10 hex = 16.

Identifiers used for register, port and variable names must begin with an alphabetic
character or underscore and consist of alphanumeric characters and underscores.

Language Definition - Ports

Port statements define the inputs and outputs to the logic device. They are of the form

family Logic family string UNIV none n/a

in_family Input logic family string UNIV none n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 -  n/a

min_sink Minimum sink
current

real -0.001 none n/a

max_source Maximum source
current

real 0.001 none n/a

sink_current Input sink current real 0 none n/a

source_current Input source current real 0 none n/a

Name Description Type Default Limits Vector
bounds
314

Chapter 9 Digital Simulation
PORT (DELAY=output_delay) port_name OUT [pin1| pin1:pin2]

or

PORT port_name IN|OUT [pin1| pin1:pin2]

Ports define a label to a single pin or sequence of pins so that they can be treated as a
single entity in the remainder of the logic definition. In the case of outputs they can
optionally also define an output delay. (If this is not specified a default output delay
defined in the devices .MODEL statement is used).

port_name Any name to reference the port. Must start with a letter or
underscore and consist only of letters numbers and underscores.
Names are not case sensitive.

pin1,pin2 Identifies pin or range of pins that port accesses. See next
section for more details.

output_delay Output delay in seconds. When an output port is assigned a
value, the actual output is updated after this delay has elapsed (+
any loading delay). You may use engineering units in the normal
way. E.g. 10n is 10e-9.

Relationship between ports, netlist entry and symbol definition

The netlist entry for an arbitrary logic block is of the form:

Axxx [input_node_list] [output_node_list] model_name

The pin numbers in the port statements above, i.e. pin1 and pin2 are the positions
within the input_node_list for input ports and output_node_list for output ports.

So if the netlist entry is:

A12 [1 2 3 4] [A B C D] ARB1

the port definition:

PORT output OUT[0:3] ;

assigns the label output to the netlist pins A B C and D. If, for example, the value 7
is evaluated and assigned to output, pins A B and C would be set to a logic '1' and
pin D would be set to a logic '0'. Pins 1 2 3 & 4 would be used for input ports in a
similar way.

The netlist entry relates directly to a symbol definition for an arbitrary logic block.
When defining a symbol to be used with an ALB you should observe the following
rules

• The first input pin's name and the first output pin's name should both be prefixed
with a '['.

• The last input pin's name and the last output pin's name should both be suffixed
with a ']'.
315

Simulator Reference Manual
• Use Property/Pin | Edit Pin Order… to define the pin order with input pins first
then output pins.

• You should assign a MODEL property with the value 'A'.

Language Definition - Registers and Variables

Registers are the main working elements of the arbitrary logic block. There are four
main types. These are:

• Edge triggered. The value of these change on the rising edge of an assigned
clock.

• Level triggered. The value of these change when an assigned enable is at a logic
'1' level.

• Combinational. The value of these change after a specified delay.

• Read-only. These are given a fixed value which cannot be changed. These would
usually be arranged in indexable arrays to implement a read only memory.

Edge and level triggered registers may be arranged in indexable arrays. Level or edge
triggered arrays form a read-write memory or RAM.

In addition to registers there are also local variables. These can be assigned a value that
can later be used in a register assignment.

All registers must be declared. Local variables are declared by simply assigning a
value to them.

The syntax for register declarations follow:

Edge Triggered Register Declaration

EDGE (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, MINCLOCK=reg_minclock]
[, HOLD=reg_hold_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1]) name [[array_size]]
[= initial_condition *[, initial_condition]] ;

input_pin_spec This specifies which input pin is the clock and must be of the
form: IN[n] where n is a pin number. See “Relationship between
ports, netlist entry and symbol definition” on page 315 for
details on how pin numbers relate to netlist entries and symbol
definitions.

reg_delay Register delay in seconds. This is the delay between the clock
rising edge and the register value changing. You can use
engineering units in the normal way.
Default: REG_DELAY parameter in .MODEL statement
defines default value. This is turn has a default value of 1nS.
316

Chapter 9 Digital Simulation
reg_width Register width in bits. This has a maximum of 32.
Default: 32

reg_minclock Minimum clock width. This must be less than or equal to
reg_delay. The register value will not update if the clock width
is less than this value.
Default: MIN_CLOCK parameter in .MODEL statement
defines default value. This in turn has a default value of 0.

reg_hold_time Register hold time. This is the time that the input data (i.e.
assignment value) must remain stable after the clock edge, for
the new value to be accepted. If the BITWISE parameter is set
to '1' (which it is by default) the hold time is applied on a bit by
bit basis. That is any individual bit in the register that remains
stable during the hold period will attain the new value even if
other bits violate the hold time. If BITWISE is '0' then if a single
bit violates the hold time, the whole register will remain
unchanged even if some bits remain stable during the hold
period. Setting BITWISE to '0' saves system memory which can
be important for large arrays (i.e. RAMs).
Default: HOLD_TIME parameter in .MODEL statement defines
default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an
asynchronous assignment. This must be less than or equal to
reg_delay.
Default: reg_delay

BITWISE value See reg_hold_time
Default: '1' for single registers, '0' for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

initial_condition Value assigned to register when simulation starts.
Default: 0

Notes:
To implement register setup time, assign a value to reg_hold_time equal to the sum of
the register setup and hold times then delay the input data by a period equal to the setup
time.

Level Triggered Register Declaration

LEVEL (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, SETUP=reg_setup_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1] name [[array_size]]
[= initial_condition *[, initial_condition]] ;
317

Simulator Reference Manual
input_pin_spec This specifies which input pin is the enable and must be of the
form: IN[n] where n is a pin number. See “Relationship between
ports, netlist entry and symbol definition” on page 315 for
details on how pin numbers relate to netlist entries and symbol
definitions.

reg_delay Register delay in seconds. If the enable is already high, this is
the time taken for the register to acquire new data. Otherwise it
is the delay between enable rising edge and the register value
changing. You can use engineering units in the normal way.
Default: REG_DELAY parameter in .MODEL statement
defines default value. This is turn has a default value of 1nS.

reg_width Register width in bits. This has a maximum of 32.
Default: 32

reg_setup_time Register hold time. This is the time that the input data (i.e.
assignment value) must remain stable prior to an enable falling
edge, for the new value to be accepted. If the BITWISE
parameter is set to '1' (which it is by default) the setup time is
applied on a bit by bit basis. That is any individual bit in the
register that remains stable during the setup period will attain
the new value even if other bits violate the setup time. If
BITWISE is '0' then if a single bit violates the setup time, the
whole register will remain unchanged even if some bits remain
stable during the setup period. Setting BITWISE to '0' saves
system memory which can be important for large arrays (i.e.
RAMs).
Default: SETUP_TIME parameter in .MODEL statement
defines default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an
asynchronous assignment. This must be less than or equal to
reg_delay.
Default: reg_delay

BITWISE value See reg_setup_time
Default: '1' for single registers, '0' for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

initial_condition Value assigned to register when simulation starts.
Default: 0

Combinational Register Declaration

COMB ([, DELAY=reg_delay]
[, WIDTH=reg_width]
[, BITWISE=0|1]) name [= initial_condition] ;

reg_delay Register delay in seconds. You can use engineering units in the
normal way. If BITWISE is '1' (the default) this delay is applied
318

Chapter 9 Digital Simulation
on a bit by bit basis. If BITWISE is '0' then the delay is applied
to the whole register. That is the output will not change until all
inputs have remained stable for the delay time. Setting
BITWISE to '0' is useful when using combinational registers to
implement asynchronous state machines as it eliminates race
conditions.
Default: REG_DELAY parameter in .MODEL statement
defines default value. This is turn has a default value of 1nS.

reg_width Register width in bits. This has a maximum of 32.
Default: 32

name Register name.

initial_condition Value assigned to register when simulation starts.
Default: 0

Read-only Register Declaration

READONLY ([, WIDTH=reg_width] name[[array_size]]
[= initial_condition *[, initial_condition]] ;

reg_width Register width in bits. This has a maximum of 32.
Default: 32

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

name Register name.

initial_condition Value assigned to register when simulation starts.
Default: 0

Read-only registers are usually arranged as an addressable array. When reading a read-
only register, the value returned is the value defined by the initial conditions. As the
name implies it is not possible to assign read-only registers.

Language Definition - Assignments

Registers and output ports can be assigned using the assignment operator '='.
Assignment values can be constants, input ports, other registers, local variables or
expressions of any or all of these. Assignments are of the form:

register | output_port | OUT[pin1:pin2] | OUT[pin1] | local_var = expr ;

or

clocked_register[index] = expr ;

register Combinational, edge triggered or level triggered register name.

output_port Output port name

pin1, pin2 Output pin numbers. OUT[pin1:pin2] and OUT[pin1] allow
outputs to be assigned with having to declare them in a PORT
319

Simulator Reference Manual
statement.

local_var Any name not already used for a port or register. This defines
the value for a local variable that can be used in subsequent
expressions. A local variable may not be used in an expression
that precedes its definition.

expr Local variables, input ports, registers and constant values
combined using arithmetic, Boolean, bitwise Boolean, shift,
conditional and relational operators. See “Expression operators”
below for detailed documentation on all operators.

clocked_register Edge or level triggered register.

index Array index. This must be smaller than the array size. Arrays are
based at 0. That is the first element is zero and the last is (array
length-1).

Expression operators

The following table lists all operators available. These are listed in order of
precedence. Precedence determines the order of evaluation. For example in the
expression:

var1<var2 && var3<var4

The sub-expressions var1<var2 and var3<var4 are evaluated first and the result of that
those evaluations combined using && to yield the final result. This is because < has
higher precedence than &&. The precedence can be altered using parentheses in the
usual way.

Class Operators Description

Index [] E.g. var1[4]. Index operator to
access array element.

Unary + - Operator to single value e.g. -5

Arithmetic multiplicative * / % Arithmetic multiply/divide/
modulus treating all values as
unsigned integers. % returns
remainder after division

Arithmetic additive + - Arithmetic operation treating all
values as unsigned integers

Shift << >> Shift-left and shift right. E.g. reg1
<< 2 will shift reg1 left by two bits

Relational < > <= >= If condition met result is 1
(=TRUE) otherwise result is zero
(=FALSE)
320

Chapter 9 Digital Simulation
Note that the operators and their precedence are a subset of those used in the 'C'
programming language with the exception of <>.

Controlling Output Enables

An output can be set into a high impedance state using a modification to an output port
variable. Use the suffix .EN after the output port or port identifier to signify that the
result of the expression should control the output enable. E.g. the following is
extracted from the 74XX244 definition:

PORT (DELAY=USER[0]) Output out[0:3] ;
Output.En = Out_En_Del ? 0 : 0xf ;

Examples

Y = !Enable ? A_Del != B_Del : 1 ;

If Enable is 0 then Y will be the result of A_Del != B_Del otherwise the result will be
1.

Shift = !Par_En_Del ? Par_Data_Del :(Shift<<1) | Ser_Data_Del;

This describes the action of a parallel loadable shift register.

Equality == <> != == means EQUAL
<> and != both mean NOT
EQUAL
Return 1 when condition met and
0 when condition is not met

Bitwise AND & Performs a Boolean AND bit by
bit

Bitwise XOR ^ Performs a Boolean exclusive
OR bit by bit

Bitwise OR | Performs a Boolean OR bit by bit

Logical AND && Returns 1 if both values are non-
zero (TRUE) otherwise returns
zero (FALSE)

Logical OR || Returns 1 if either value is non-
zero (TRUE) otherwise return
zero (FALSE)

Conditional expression cond ? res1 :
res2

Returns res1 if cond is non-zero
(TRUE) otherwise returns res2

Example A<B ? 16 : 0

returns 16 if A is less than B
otherwise returns 0

Class Operators Description
321

Simulator Reference Manual
out[0]= !in[1]&!in[2] | in[1]&!in[2]&in[0] |
!in[1]&in[2]&in[0]

An example of referencing inputs and outputs directly without needing PORT
statements.

Language Definition - User and Device Values

Sometimes it is convenient to use the logic description to define the functionality of a
block but have the timing and other specifications specified separately. This is
achieved by USER and DEVICE values. USER values are specified in the .MODEL
statement while DEVICE values are specified on the device at the netlist (or schematic
device) level. The values are referenced in the logic definition in the form:

USER[index]

and

DEVICE[index]

These can replace any constant value in an expression, register qualifier or port
qualifier. (Register and port qualifiers are the values in parentheses after the register/
port keyword. E.g. DELAY, HOLD, SETUP etc.).

To set USER values in a .MODEL statement, assign the parameter USER. This is a
vector parameter, that is it can have any number of values and these must be enclosed
in square brackets '[' and ']'. For example:

.MODEL Counter8 d_logic_block file=counter_8.ldf
+ user=[10n, 5n]

The logic definition to which this model refers - counter_8.ldf - can use USER[0] and
USER[1] to refer to the values 10n and 5n respectively.

To set DEVICE values in a netlist, the netlist entry for the device must be appended
with:

: USER=[values]

For example:

A$U3 [clock] [Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7] Counter8 :
+ USER=[10n, 5n]

The logic definition for this device can use DEVICE[0] and DEVICE[1] to access the
USER values in the netlist i.e. 10n and 5n respectively. Always remember to include
the colon. This acts as a separator between the device name and any parameters.

Diagnostics: Trace File

In order to debug models, a tracing facility is provided. If the .MODEL TRACE_FILE
parameter or instance parameter of the same name is specified, a file will be created
which lists the values of all internal registers at each time point.
322

Chapter 9 Digital Simulation
The file will usually have a number of lines of the form:
Roll back to <time>

For example the following is an extract from an actual trace file

 5.00022e-05 2696 9 2696 0
 5.09397e-05 2696 9 2696 0
 5.09407e-05 2692 10 2692 0

Roll back to 5.08599e-05

 5.09397e-05 2696 9 2696 0
 5.09407e-05 2692 10 2692 0
 5.09657e-05 2692 10 2692 0

Roll-back occurs when an analog time step is rejected but the digital simulation has
already advanced past the new analog time. In this case the digital simulator has to
back-track events. This mechanism is central to the operation of the mixed-mode
system and is explained in more detail in “Mixed-mode Simulator - How it Works”
below.

Mixed-mode Simulator - How it Works

Event Driven Digital Simulator

The digital simulator is said to be Event Driven. An event is essentially a change of
state e.g. a gate output changing from logic '0' to logic '1'. When an event occurs on an
output, all devices with inputs connected to that output are notified of the event and
can respond appropriately by generating new events.

For example, consider the following circuit fragment.

HC00

U2

U1

HC04

HC02

U3

LOGIC '1'

LOGIC '0'
323

Simulator Reference Manual
U1 receives an event, a rising edge at its input at time = T. U1 has a propagation delay
of 5.5nS, so on receipt of the event at its input, U1 posts an event at its output with a
time T+5.5nS. At that time this event is received by U2 and U3. U3 does not respond
to this event because one of its inputs is permanently at logic '1' so its output will
always be low. U2, however, does respond and creates a low-high event at a time
delayed by its propagation delay of 6.5nS i.e. T+5.5nS+6.5nS. Any device with an
input connected to the output of U2 will process this new event and so the process
continues.

In addition to the propagation delays described above, there are also additional delays
caused by loading effects. Each input has an effective input capacitance and each
output a resistance. For each event, an additional delay is added equal to the sum of all
capacitances on the node multiplied by the driving output's resistance.

Interfacing to the Analog Simulator

Connections between the analog and digital system are made via special interfaces
bridges. (As described in “Analog to Digital Interfaces” on page 301 these bridges are
implicitly included by the simulator and it isn't necessary for the user to wire them in.)
The digital to analog interface has an output that looks like - to a first approximation -
an analog representation of a digital gate. This output changes voltage at a specified
rise and fall time when the digital input changes state. More importantly, the analog
system is notified when an event occurs at the input to a D-A interface bridge and a
timestep is forced at that time. This is known as a breakpoint and is the analog
equivalent of an event. The analog system is only notified of events that occur at the
input of D-A bridges. It knows nothing of events that are internal to the digital system.

Analog to digital interface bridges are much like a comparator. When the analog input
passes a threshold, the output state changes appropriately and a digital event is
generated.

Time Step Control

With two simulators running largely independently, something is needed to
synchronise the timesteps. Basically the analog system is in control. It tells the digital
system to process events up to a certain time, that time being the analog system's next
anticipated time point. A problem arises, however in that the next analog timestep is
not guaranteed to be accepted. The analog system frequently rejects timesteps either
because of slow convergence or because a shorter timestep is needed to maintain the
required accuracy. If the analog system has to cut back the timestep to a point prior to
the most recent digital event, then the digital system has to back-track. This process is
known as roll-back and the need for the digital simulator to be able to perform it
substantially increases its complexity. In order to roll-back the digital simulator has to
store its past history back to the most recent accepted analog timepoint

Enhancements over XSPICE

• Gate delays in XSPICE are stored i.e. like a transmission line not like a real gate.
SIMetrix gate delays are inertial so if a pulse shorter than the propagation delay
is received, it is swallowed not transmitted.

• Automatic interface creation. In XSPICE you have to explicitly join digital and
analog nodes via interface bridges. In SIMetrix this is done automatically.
324

Chapter 9 Digital Simulation
• Fan out implemented. The underlying mechanism for load dependent delay was
there but none of the models supported it. Static loading effects (as in bipolar
logic) was not supported at all. In SIMetrix it is.

• Input load reflected in analog to digital interfaces. The AD interfaces in XSPICE
have infinite input impedance regardless of what the digital output is driving.
SIMetrix AD interfaces reflect the digital capacitative and static load at their
inputs.

• Output strength reflected in digital to analog interfaces. The DA interfaces in
XSPICE have zero output impedance regardless of what is driving them.
SIMetrix DA interfaces reflect the strength of the digital output driving the input.
A hi-z logic state will look like a hi-z logic state when transferred to the analog
domain. This is not the case with XSPICE.

• AD interface threshold detection. All AD interfaces switch at a particular input
threshold. In the XSPICE system the output switched at the first analog timepoint
that exceeded the threshold. This could be a long way passed the threshold if the
analog time steps are large. In SIMetrix a mechanism has been implemented that
cuts back the time step so that the threshold is hit within a specified time
tolerance.

• Arbitrary logic block device. This allows the definition of any logic device using
a simple descriptive language. The language accommodates combinational logic,
synchronous and asynchronous registers as well as look up tables (i.e. ROMS)
and arrays (i.e. RAMs)

• Arbitrary analog to digital converter. Up to 32 bits with specified input range and
offset, conversion time and maximum conversion rate. Output may be in two's
complement or offset binary.

• Arbitrary digital to analogue converter. Up to 32 bit with specified input range
and offset and output slew time. Input may be in two's complement or offset
binary.

• Voltage controlled oscillator (analog in digital out). There was one of these in the
original XSPICE code but it suffered a number of problems and was scrapped.
The SIMetrix version is all new.
325

Simulator Reference Manual
Index

.ALIAS 210

.DC 211

.ENDF 213

.ENDS 44

.FILE 213

.FUNC 214

.GRAPH 215

.INC 222

.LIB 227

.MODEL 228

.NODESET 232

.OPTIONS 237

.OUT file 24

.PARAM 33, 42, 251

.SUBCKT 44, 261

.SXDAT files 25

.TEMP 262

.TRACE 264

A
ABS (function) 37
ABSTOL (simulator option) 238, 295
AC analysis 209
ACCT (simulator option) 238
ACOS (function) 37
ACOSH (function) 37
ad_converter model 187
adc_bridge model 190
adc_schmitt model 202
Analog-digital converter 187
Analog-digital interface bridge 190
Analog-digital schmitt trigger 202
And gate 146
Arbitrary logic block

language definition 308
model 165

Arbitrary source 54
charge devices 56
examples 56
flux devices 56
326

Index
look-up tables 40
non-linear capacitors and inductors 56

ASIN (function) 37
ASINH (function) 37
ASYNCDELAY - arbitrary logic block keyword 316, 317
ATAN (function) 37
ATAN2 (function) 37
ATANH (function) 37

B
Batch mode 15
B-H curves 87
BINDIAG (simulator option) 238
Bipolar junction transistor 58, 66, 70
BITWISE - arbitrary logic block keyword 316, 317, 318
BJT 58, 66, 70

model parameters 59
BSIM3 100
BSIM4 102
Buffer (digital) 152

C
Capacitor 72

model parameters 74
CCCS 74
CCVS 76
CHGTOL (simulator option) 238, 296
CLOCK - arbitrary logic block keyword 316, 317
COMB - arbitrary logic block keyword 318
Comments 22

inline 49
Configuration 17
Connection types 30
Constant parameters 33
Controlled digital oscillator 200
Convergence 282
COS (function) 37
COSH (function) 37
Current controlled current source 74
Current controlled voltage source 76
Current source 76

D
d_and model 147
d_buffer model 152
327

Simulator Reference Manual
d_dff model 150
d_dlatch model 148
d_fdiv model 154
d_inverter model 160
d_jkff model 162
d_nand model 167
d_nor model 168
d_open_c model 169
d_open_e model 170
d_or model 171
d_osc model 201
d_pulldown model 172
d_pullup model 173
d_pulse model 156
d_ram model 174
d_source model 157
d_srff model 175
d_srlatch model 178
d_state model 179
d_tff model 181
d_tristate 184
d_xnor model 185
d_xor model 186
da_converter model 194
dac_bridge model 197
Data file 25
Data names 26
DC analysis 211
DCOPSEQUENCE (simulator option) 238
DDT (function) 37
DEFAD (simulator option) 238
DEFAS (simulator option) 238
DEFL (simulator option) 239
DEFNRD (simulator option) 239
DEFNRS (simulator option) 239
DEFPD (simulator option) 239
DEFPS (simulator option) 239
DEFW (simulator option) 239
Delay

load 307
wire 308

DELAY - arbitrary logic block keyword 316, 317, 318
Delay time (pulse source) 124
DEVICE - arbitrary logic block keyword 322
328

Index
Digital devices 145
delays 146
family parameters 145, 304
input parameters 146
output parameters 145

Digital model libraries 308
Digital pulse 156
Digital signal source 157
Digital simulation 300

analog to digital interfaces 301
logic families 303
logic states 300

Digital-analog converter 194
Digital-analog interface bridge 197
DIGMINTIME (simulator option) 239
Diode 77

model parameters 78, 80
D-type flip flop 150
D-type latch 148

E
Ebers-Moll 66
EDGE - arbitrary logic block keyword 316
EKV 103
Embedding files in netlist 213
Exclusive NOR gate 185
Exclusive OR gate 186
EXP (function) 37
EXPAND (simulator option) 25, 239
EXPANDFILE (simulator option) 25, 239
Exponential source 128
Expressions 31–43

.PARAM 33
circuit variables 32
for arbitrary source 55
for device parameters 31
for model parameters 32
functions 37
operators 34
parameters 33
syntax 32

F
Fall time

pulse source 125
329

Simulator Reference Manual
FAMILY (model parameter) 304
FASTPOINTTOL (simulator option) 239
FASTRELTOL (simulator option) 239
Files - embedding in netlist 213
Filter response functions 118
Flicker noise, resistor 108
FLOOR (function) 37
FLUXTOL (simulator option) 239, 296
Frequency divider 153

G
GaAsFET 83

model parameters 83
Gate-drain capacitance 99
GAUSS (function) 38
GAUSSE (function) 38
GAUSSEL (function) 38
GAUSSL (function) 38
GEAR 243
Gear integration 296
Global nodes 47
GMIN (simulator option) 240
GMIN, MOSFET implementation 104
GMINMAXITERS (simulator option) 240
GMINMULT (simulator option) 240
GMINSTEPITERLIMIT (simulator option) 240
Gummell Poon 58
Gummel-Poon 66

H
HIGH (logic state) 300
HI-IMPEDANCE (logic strength) 300
HOLD - arbitrary logic block keyword 316

I
ICRES (simulator option) 240
IF (function) 37
IFF (function) 37
IGBT 88
IN_FAMILY (model parameter) 304
Inductor 84

saturable 85
with hysteresis 85

Initial conditions 221
Initial value (pulse source) 124
330

Index
Integration methods 296
Internal nodes 27
Inverter (digital) 160
ITL1 (simulator option) 240
ITL2 (simulator option) 240
ITL4 (simulator option) 241
ITL7 (simulator option) 241

J
JFET 89
Jiles-Atherton 86
JK flip-flop 161
Junction FET 89

model parameters 90

L
Language 49
Language declaration 21
Laplace block 113
LEVEL - arbitrary logic block keyword 317
LIMIT (function) 37
List file 24
LN (function) 37
Load delay 307
LOG (function) 37
LOG10 (function) 37
Logic compatibility tables 304
Logic families 303
Logic states 300
LOGICHIGH (simulator option) 36, 241
LOGICLOW (simulator option) 36, 241
LOGICTHRESHHIGH (simulator option) 36, 241
LOGICTHRESHLOW (simulator option) 36, 242
Look-up tables 40
Lossy transmission line 92

model parameters 92
LOW (logic state) 300

M
MATCHEDSUBCIRCUITS (simulator option) 242
MAX (function) 37
MAXEVTITER (simulator option) 242
MAXOPALTER (simulator option) 242
MAXORD (simulator option) 242
MaxVectorBufferSize (global setting) 19
331

Simulator Reference Manual
MC_ABSOLUTE_RECT (simulator option) 242
MC_MATCH_RECT (simulator option) 242
MCLOGFILE (simulator option) 242
METHOD (simulator option) 243, 296
Mextram 143
MIN (function) 37
MINBREAK (simulator option) 243
MINCLOCK - arbitrary logic block keyword 316
MINGMINMULTIPLIER (simulator option) 243
MINTIMESTEP (simulator option) 243
Model parameters

analog-digital bridge 191
analog-digital converter 188
arbitrary logic block 166
BJT 59
Buffer 152
capacitor 74
controlled digital oscillator 201
digital initial condition 155
digital pulse 156
digital signal source 158
digital-analog bridge 198
digital-analog converter 195
diode 78, 80
D-type flip-flop 150
D-type latch 148
exclusive NOR gate 185
exclusive OR gate 186
frequency divider 154
gaAsFET 83
inverter 161
JK flip-flop 162
junction FET 90
laplace block 114
lossy transmission line 92
MOSFET 98
NAND gate 167
NOR gate 168
open-collector buffer 169
open-emitter buffer 170
OR gate 171
pulldown resistor 172
pullup resistor 173
resistor 108
332

Index
schmitt trigger 203
set-reset flip-flop 175
SR latch 178
state machine 179
toggle flip-flop 182
tri-state buffer 184
voltage controlled switch 122

Monte Carlo
distribution functions 38

MOSFET 93
model parameters 95, 98

MOSGMIN (simulator option) 243
Multi step analyses 207
Mutual inductor 131

N
Names, vector 26
Nand gate 167
Netlist 20
NEWGMIN (simulator option) 244
NODELIMIT (simulator option) 244
Nodes, internal 27
NODESETRES (simulator option) 244
Noise analysis

creating noise info file 235
real time 267

Noise source 129
NOMCLOG (simulator option) 244
NOMOD (simulator option) 25, 244
NOMOS9GATENOISE (simulator option) 244
Non-GUI mode 15
NOOPALTER (simulator option) 244
NOOPINFO (simulator option) 244
NOOPITER (simulator option) 244
Nor gate 168
NORAW (simulator option) 245
NOSENSFILE (simulator option) 245
NoStopOnUnknownParam (global setting) 19
NUMDGT (simulator option) 245

O
OLDLIMIT (simulator option) 245
OLDMOSGMIN (simulator option) 245
OLDMOSNOISE (simulator option) 246
Open-collector buffer 169
333

Simulator Reference Manual
Open-emitter buffer 170
Operating point analysis

output file 237
OPINFO (simulator option) 25, 246
OPINFOFILE (simulator option) 246
OPTIMISE (simulator option) 246
Or gate 171
OUT - arbitrary logic block keyword 319
OUT_FAMILY (model parameter) 304
out_res 307
out_res_neg 307
out_res_pos 307

P
Parameters

.PARAM 251
built-in constants 33
in circuits 41
model 251
passing to subcircuits 253

PARAMLOG (simulator option) 25, 246
Period (pulse source) 125
Philips models 138
Piece-wise linear source 126
PIVREL (simulator option) 246
PIVTOL (simulator option) 247
POINTTOL (simulator option) 247, 295
POLY 74, 76
Polynomial specification 75
PORT - arbitrary logic block keyword 314
PSpice 21
PTAACCEPTAT 247
PTACONFIG (simulator option) 247
PTAMAXITERS (simulator option) 247
PTAOUTPUTVECS (simulator option) 247
Pulldown resistor 172
Pullup resistor 173
Pulse (digital) 156
Pulse source 124
Pulse width (pulse source) 125
Pulsed value (pulse source) 124
PWL file source 126
PWR (function) 37
PWRS (function) 37
334

Index
R
Random access memory 173
READONLY - arbitrary logic block keyword 319
Real time noise analysis 267
RELTOL (simulator option) 248, 295
RESISTIVE (logic strength) 300
Resistor 107

model parameters 108
Rise time

pulse source 125
RSHUNT (simulator option) 248

S
s_xfer model 114
SDT (function) 37
SEED (simulator option) 248
SENSFILE (simulator option) 248
Sensitivity analysis 256
Set-reset flip-flop 174
SETUP - arbitrary logic block keyword 317
SGN (function) 38
SIMULATOR CONTROLS

.FILE 127, 213
Simulator controls

.AC 209

.ALIAS 210

.DC 211

.ENDF 213

.GRAPH 215

.IC 221

.INC 222

.LIB 227

.MODEL 228

.NODESET 232

.OP 236

.OPTIONS 237

.PARAM 251

.SENS 256

.SUBCKT 261

.TEMP 262

.TRACE 264

.TRAN 265
SIN (function) 38
Single frequency FM 129
SINH (function) 38
335

Simulator Reference Manual
Sinusoidal source 127
Snapshots 267
SOURCEMAXITERS (simulator option) 250
Spectrum (function) 220
SQRT (function) 38
SR latch 177
Star-Hspice 21
State machine (model) 179
States - logic 300
Stimulus

exponential source syntax 128
noise source syntax 129
piece wise linear syntax 126
pulse source syntax 124
PWL file source syntax 126
sine source syntax 127
single frequency FM syntax 129

STP (function) 38
STRONG (logic strength) 300
Subcircuits 44

.SUBCKT control 261
calling from a netlist 45
global nodes 47
nesting 46
passing parameters 46

T
Tables, look-up 40
TAN (function) 38
TANH (function) 38
TEMP (simulator option) 250
TempDataDir (global setting) 19
TIMESTATS (simulator option) 250
TLMINBREAK (simulator option) 250
TNOM (simulator option) 250
Toggle flip-flop 181
TotalVectorBufferSize (global setting) 19
Trace file (arbitrary logic block) 322
Transient analysis 265

fast start 266
snapshots 267

Transmission line (lossless) 120
Transmission line (lossy) 92
Tri-state buffer 183
TRTOL (simulator option) 250, 295
336

Index
TRYTOCOMPACT (simulator option) 250

U
U (function) 38
UIC 266
UNDETERMINED (logic strength) 300
UNIF (function) 38
UNIFE (function) 38
UNIFEL (function) 38
UNIFL (function) 38
UNIV - universal logic family 307
UNKNOWN (logic state) 300
URAMP (function) 38
USER - arbitrary logic block keyword 322

V
VBIC 66, 70
VCVS 121
Vector connections 29
Vector names 26
VNTOL (simulator option) 251, 295
Voltage controlled current source 121
Voltage controlled switch 122

model parameters 122
Voltage source 123

exponential 128
noise source 129
piece wise linear 126
pulse 124
PWL file 126
sine 127
single frequency FM 129

W
WC (function) 38
WCE (function) 38
WCEL (function) 38
WCL (function) 38
WIDTH - arbitrary logic block keyword 316, 317, 318, 319
WIDTH (simulator option) 25, 251
Wire Delay 308
WIRETABLE (simulator option) 251

X
XSPICE

devices 145
337

	Chapter 1 Introduction
	Overview
	The SIMetrix Simulator - What is it?
	What is in This Manual

	Chapter 2 Running the Simulator
	Using the Simulator with the SIMetrix Schematic Editor
	Adding Extra Netlist Lines
	Displaying Net and Pin Names
	Editing Device Parameters
	Editing Literal Values - Using shift-F7

	Running in non-GUI Mode
	Overview
	Important Licensing Information
	Syntax
	Aborting
	Reading Data

	Configuration Settings
	Netlist Format
	File Format
	Language Declaration
	Comments
	Device Lines
	Simulator Statements

	Simulator Output
	The List File
	The Binary Data File
	Output Data Names

	Data Handling - Controlling Data Saved

	Chapter 3 Simulator Devices
	Overview
	Using XSPICE Devices
	Vector Connections
	Connection Types

	Using Expressions
	Overview
	Using Expressions for Device Parameters
	Using Expressions for Model Parameters
	Expression Syntax
	Optimisation

	Subcircuits
	Overview
	Subcircuit Definition
	Subcircuit Instance
	Passing Parameters to Subcircuits
	Nesting Subcircuits
	Global Nodes
	Subcircuit Preprocessing

	Model Binning
	Overview
	Defining Binned Models
	Example

	Language Differences
	Inline Comment
	Unlabelled Device Parameters
	LOG() and PWR()

	Customising Device Configuration
	Overview
	What does the Device Configuration File do?
	Creating a Device Configuration File
	List of All Simulator Devices

	Chapter 4 Analog Device Reference
	Overview
	Further Documentation
	AC Table Lookup (including S-Parameters)
	AC Table Notes

	Arbitrary Source
	Notes on Arbitrary Expression
	Charge and Flux Devices
	Arbitrary Source Examples
	PSpice and Hspice syntax

	Bipolar Junction Transistor (SPICE Gummel Poon)
	Notes

	Bipolar Junction Transistor (VBIC without self heating)
	Notes

	Bipolar Junction Transistor (VBIC with self heating)
	Notes

	Bipolar Junction Transistor (MEXTRAM)
	Bipolar Junction Transistor (HICUM)
	Capacitor
	Current Controlled Current Source
	Polynomial Specification

	Current Controlled Voltage Source
	Current Source
	Diode - Level 1 and Level 3
	Diode - Soft Recovery
	Basic Equations
	References

	GaAsFET
	Inductor (Ideal)
	Inductor (Saturable)
	Notes on the Jiles-Atherton model
	Notes on the non-hysteresis model
	Implementing Transformers
	Plotting B-H curves
	References

	Insulated Gate Bipolar Transistor
	Junction FET
	Lossy Transmission Line
	MOSFET
	BSIM3 MOSFETs
	Notes
	Version Selector
	Model Parameters
	Further Documentation
	Process Binning

	BSIM4 MOSFETs
	Notes
	Further Documentation
	Process Binning

	EKV MOSFETs
	Notes

	HiSim HV MOSFET
	Notes

	MOSFET GMIN Implementation
	PSP MOSFET
	Resistor
	Resistor - Hspice Compatible
	Resistance Calculation
	Capacitance Calculation
	Temperature Scaling
	Flicker Noise
	ACRESMOD Parameter
	Making the Hspice Resistor the Default

	CMC Resistor
	S-domain Transfer Function Block
	Description
	Examples
	The Laplace Expression
	Defining the Laplace Expression Using Coefficients
	Other Model Parameters
	Limitations
	The XSPICE S_XFER model

	Subcircuit Instance
	Transmission Line
	Example

	Voltage Controlled Current Source
	Voltage Controlled Switch
	Voltage Controlled Switch Notes

	Voltage Controlled Voltage Source
	Voltage Source
	Pulse Source
	Piece-Wise Linear Source
	PWL File Source
	Sinusoidal Source
	Exponential Source
	Single Frequency FM
	Noise Source
	Extended PWL Source

	Mutual Inductor
	Notes
	Example

	Verilog-HDL Interface (VSXA)
	Overview
	Analog Input Interface
	Analog Output Interface
	Data Vector Output
	Module Cache

	NXP Compact Models
	Introduction
	SIMKIT Devices
	Notes on SIMKIT Models
	PCM Devices
	Notes on PCM Models
	Documentation

	Chapter 5 Digital/Mixed Signal Device Reference
	Digital Device Overview
	Common Parameters
	Delays

	And Gate
	D-type Latch
	D-type Flip Flop
	Buffer
	Frequency Divider
	Digital Initial Condition
	Digital Pulse
	Digital Signal Source
	Inverter
	JK Flip Flop
	Arbitrary Logic Block
	Nand Gate
	Nor Gate
	Open-Collector Buffer
	Open-Emitter Buffer
	Or Gate
	Pulldown Resistor
	Pullup Resistor
	Random Access Memory
	Set-Reset Flip-Flop
	SR Latch
	State Machine
	Toggle Flip Flop
	Tri-State Buffer
	Exclusive NOR Gate
	Exclusive OR Gate
	Analog-Digital Converter
	Analog-Digital Interface Bridge
	Digital-Analog Converter
	Digital-Analog Interface Bridge
	Controlled Digital Oscillator
	Analog-Digital Schmitt Trigger

	Chapter 6 Command Reference
	Overview
	General Sweep Specification
	Overview
	Syntax

	Multi Step Analyses
	Overview
	Syntax

	.AC
	.ALIAS
	.DC
	.FILE and .ENDF
	.FUNC
	.GLOBAL
	.GRAPH
	Parameters
	Using Multiple .GRAPH Statements
	Creating X-Y Plots
	Using .GRAPH in Subcircuits
	Using Expressions with .GRAPH
	Plotting Spectra with .GRAPH

	.IC
	Alternative Initial Condition Implementations

	.INC
	.KEEP
	Option Settings

	.LOAD
	.LIB
	SIMetrix Native Form
	HSPICE Form

	.MODEL
	.NOCONV
	.NODESET
	.NOISE
	.OP
	.OPTIONS
	.PARAM
	.POST_PROCESS
	.PRINT
	.SENS
	.SETSOA
	Examples

	.SUBCKT and .ENDS
	.TEMP
	.TF
	.TRACE
	.TRAN
	Real Time Noise Analysis

	Chapter 7 Monte Carlo Analysis
	Overview
	Specifying a Monte Carlo Run
	Specifying a Single Step Monte Carlo Sweep
	Log File
	Seeding the Random Number Generator
	Specifying Tolerances
	Overview
	Distribution Functions
	Hspice Distribution Functions
	TOL, MATCH and LOT Device Parameters
	Tolerance Models

	Chapter 8 Convergence, Accuracy and Performance
	Overview
	DC Operating Point
	Overview
	Source and GMIN Stepping
	Pseudo Transient Analysis
	Junction Initialised Iteration
	Using Nodesets

	Transient Analysis
	What Causes Non-convergence?
	Fixes for Transient Non-convergence

	DC Sweep
	DC Operating Point Algorithms
	Junction Initialised Iteration
	Source Stepping
	Diagonal GMIN Stepping
	Junction GMIN Stepping
	Pseudo Transient Analysis
	Controlling DC Method Sequence

	Singular Matrix Errors
	Transient Analysis - ‘Time step too small’ Error
	Accuracy and Integration Methods
	A Simple Approach
	Iteration Accuracy
	Time Step Control
	Accuracy of AC analyses
	Summary of Tolerance Options
	Integration Methods - METHOD option

	Using Multiple Core Systems
	Single Step Runs
	Using Multiple Cores for Single Step Runs
	Multi-core Multi-step Simulation

	Matrix Solver

	Chapter 9 Digital Simulation
	Overview
	Logic States
	State resolution table

	Analog to Digital Interfaces
	How A-D Bridges are Selected

	Logic Families
	Logic Family Model Parameters.
	Logic Compatibility Tables
	Logic Compatibility File Format
	Supported Logic Families
	Universal Logic Family
	Internal Tables

	Load Delay
	Overview
	Output Resistance
	Input Delay
	Wire Delay

	Digital Model Libraries
	Using Third Party Libraries

	Arbitrary Logic Block - User Defined Models
	Overview
	An Example
	Example 2 - A Simple Multiplier
	Example 3 - A ROM Lookup Table
	Example 4 - D Type Flip Flop
	Device Definition - Netlist Entry & .MODEL Parameters
	Language Definition - Overview
	Language Definition - Constants and Names
	Language Definition - Ports
	Language Definition - Registers and Variables
	Language Definition - Assignments
	Language Definition - User and Device Values
	Diagnostics: Trace File

	Mixed-mode Simulator - How it Works
	Event Driven Digital Simulator
	Interfacing to the Analog Simulator

	Enhancements over XSPICE

	Index

