
Discrete filter

Operation
Each of these discrete filters is driven by an input clock signal. For proper operation, the input
clock signal needs to be made up of a train of pulses with pulse widths equal to or wider than the
“Time of Acquisition” set for the filter. For the most efficient simulation, this kind of pulses can
be generated by driving periodic pulses through the “Sampling Clock Generator for Discrete
Filters.” If the “Sampling Clock Generator for Discrete Filters” is used to generate the input
clock signals for the discrete filters, the driving periodic pulses can have pulse widths shorter
than the time of acquisition as long as they are well defined pulses.

IC=0

T_ACQ=1n

U11-POLE

DISCRETE FILTER
OUT

CLK_OUT

IN

CLK_IN

RTN

T_ACQ=1n

U_CLKDISCRETE FILTER

SAMPLING CLOCK

GENERATOR
CLK_OUTTRIG

RTN

V_CLK

V_IN

If the time of acquisition is ACQt , then the “Sampling Clock Generator for Discrete Filters” will

generate a pulse whose pulse width is equal to ACQt every time its “TRIG” input makes a positive

transition exceeding 3V. During this pulse, the discrete filter will sample the input data at the
“IN” input pin and it will take ACQt for it to satisfactorily acquire the input data. After ACQt has

expired, the discrete filter will update its output, and the output will settle within a time duration
less than or equal to ACQt . In addition, during this duration when the output is updated, the

output “CLK_OUT” is raised to a high value.

U1-CLK_OUT

U1-CLK_IN

CLK

time/uSecs 2nSecs/div

11.496 11.498 11.5 11.502 11.504

O
U

T
 /

 V

3

3.5

4

4.5

5

5.5

6

6.5

7

A discrete filter with more than two poles can be synthesized through a cascade of first-order
and/or second-order discrete filters. In such case, the timing signal for each driven stage is
derived from the “CLK_OUT” signal of the immediately preceding stage.

IC=0

T_ACQ=1n

U11ST ORDER

DISCRETE FILTER

RTN

CLK_IN

IN

CLK_OUT

OUT

T_ACQ=1n

U_CLKDISCRETE FILTER

SAMPLING CLOCK

GENERATOR

RTN

TRIG CLK_OUT

V_IN

V_CLK

IC=0

T_ACQ=1n

U22ND ORDER

DISCRETE FILTER

RTN

CLK_IN

IN

CLK_OUT

OUT

First-Order Discrete Filter

The transfer function in the z -domain from the input)(zI to the output)(zO for the first-order
discrete filter is

1

1

D01

N0N1

D0

N0N1

)(

)(
)(











z

z

z

z

zI

zO
zT

This difference equation representing this transfer function is

)1(N0)(N1)1(D0)( nInInOnO

For example, if N1, N0, and D0 have been set to 0, 0.1, and 99.0 , respectively, the resulting
first-order discrete filter will have a DC gain of 10.0, a pole located at 99.0z , and no zero.

The user is required to enter the following parameters for the first-order discrete filter:

(a) N1

(b) N0

(c) D0

(d) Initial condition

(e) Acquisition Time

Second-order Discrete Filter

The transfer function in the z -domain for the second-order discrete filter is

21

21

2

2

D0D11

N0N1N2

D0D1

N0N1N2
)(











zz

zz

zz

zz
zT

This difference equation representing this transfer function is

)2(N0)1(N1)(N2)2(0D)1(D1)( nInInInOnOnO

A two-pole discrete filter without any zero can be achieved with N1 and N2 both set to zero. If
N2 is set to zero but N1 is non-zero, a two-pole discrete filter with a single zero is realized. If
N2 is non-zero, then a two-pole two-zero discrete filter is realized.

The user is required to enter the following parameters for the second-order discrete filter:

(a) N2

(b) N1

(c) N0

(d) D1

(e) D0

(f) Initial condition

(g) Acquisition Time

Discrete PID filter

The transfer function for an analog PID filter is

sK
s

K
KsT DA

IA
PA )((1)

where the A in the three coefficients PAK , IAK , and DAK are used to signify that these are the
coefficients associated with Eq. (1), which is defined for the analog PID filter.

Since (1) has two zeroes and one pole, there are more zeroes than poles, resulting in an improper
transfer function / filter. A pole is sometimes added to the derivative term to limit the bandwidth
at higher frequencies. One form for such a PID filter with a pole added for the derivative action
is

1
)(




sK

sK

s

K
KsT

DA

DAIA
PA 

 (2)

where  is called the pole factor for the derivative term. In the discrete PID filter provided, the
implemented transfer function is

1)(

)(

)(
)(




zSK

zSK

zS

K
KzT

DD

DD

I

I
P 

 (3)

where PK , IK , and DK are coefficients entered by the user. To match the frequency response
of the discrete PID filter represented by (3) to the frequency response of the analog PID filter
represented by (2), a first-order approximation is to set

SAMPLINGDAD

SAMPLINGIAI

PAP

TKK

TKK

KK

/



 (4)

where SAMPLINGT is the sampling period. If this first-order approximation is used, the frequency

response for (3) will have a very good match with the frequency response for (2), as long as the
poles and zeroes of (2) are more than two decades below the sampling frequency.

The functions)(zSI and)(zSD are transfer functions in the z -domain according to the
integration and derivative methods selected, respectively. The choices for the method are
“Forward-Euler,” “Backward-Euler,” and “Trapezoidal.”














lTrapezoida is Method)1/()1(2

Euler-Backward is Method/)1(

Euler-Forward is Method1

)(),(

zz

zz

z

zSzS DI (5)

The integration and the derivative methods are sometimes referred to as the mapping /
transformation in the literature. Mapping and transformation are easy and simple ways to
generate discrete or digital filters with frequency responses that are approximates of the
frequency response of the original s -domain analog filter. The approximation is reasonable if
the poles and zeros of the original analog filter are more than two decades below the sampling
frequency.

Due to the nature of (3) and (5), the discrete PID filter has two poles in the z -domain, one from
the integration term, and one from the derivative term. The pole from the integration term is
always located at 1z and the pole due to the derivative term is located at:


























lTrapezoida is Method Derivative
12

12

Euler-Backward is Method Derivative
1

Euler-Forward is Method Derivative
1

,

D

D

D

D

D

D

ZD

K

K

K

K

K

K

p










 (6)

Since the location of this pole should not yield unstable responses, at the very minimum, the
restraint on ZDp , is

10 ,  ZDp (7)

From (6) and (7), the restriction placed on the product DK is










lTrapezoida is of Method Derivative5.0

Euler-Backward is of Method Derivative0

Euler-Forward is Method Derivative1

DK (8)

Given values of DK and  , the location for the pole ZDp , in the z -domain can be computed

from (6). With a known value of ZDp , , the corresponding pole location in the s -domain can be

computed as follows:

SAMPLINGZDSD Tpp /)ln(,,  (9)

The formula in (9) gives only one pole location in the s -domain which is mapped to ZDp , in the

z -domain. There are infinite number of pole locations in the s -domain that are mapped to ZDp ,

in the z -domain and they are located at SAMPLINGSD TNjp /2,  where N is an integer. The

pole location as defined in (9) is considered to be inside the “primary strip” of the s -domain,
where the value of s is bounded by the two horizontal lines SAMPLINGTjs / in the s -plane.

If ZDp , is set to 0.5, the corresponding pole in the “primary strip” of the s -domain will be

located at SAMPLINGSD Tp /693.0,  , and the pole in the frequency-domain will have a corner

frequency of about 0.11 of the sampling frequency.

One the other hand, given a known sampling period and the desired pole location SDp , in the

“primary strip” of the s -domain, the location of ZDp , in the z -domain can be computed, and

then the value of  yielding such desired pole locations can be derived. First, ZDp , can be

computed from SDp , and SAMPLINGT through the following formula:

)exp(,, SAMPLINGSDZD Tpp  (10)

where exp() is the exponential function. With a sampling frequency of 2 MHz and a desired
high-frequency pole at 100 kHz, we have 5

, 1028.6 SDp and 7305.0, ZDp .

Once the desired value of ZDp , is set, the value of  yielding such a pole location can be

computed from (6) in terms of ZDp , and DK , and the net results are:























lTrapezoida is Method Derivative
)1(2

1

Euler-Backward is Method Derivative
)1(

Euler-Forward is Method Derivative
)1(

1

,

,

,

,

,

ZDD

ZD

ZDD

ZD

ZDD

pK

p
pK

p
pK

 (11)

If there are already extra low-pass filter(s) along the path of feedback, it may be desirable not to
introduce the extra pole associated with the derivative term in the discrete PID filter described
here. While it is not exactly the same as removing the extra pole, placing ZDp , at 0.0z , the

center of the origin of the z -plane, has almost the same effect. Such a pole will have no effect
on the magnitude of the derivative term of the discrete PID filter, but it will introduce a phase
delay to the derivative term. Such a phase delay is minimal until the signal of interest is at or
above one-tenth of the sampling frequency.

If the poles and zeros of the original analog PID filter are well below the sampling frequency,
then the three integration methods yield essentially the same result and the three derivative
methods yield essentially the same result. The three methods were provided as a convenience if

the user is using one of the three mappings or transformations as a quick way to implement a
discrete PID filter when the desired analog PID transfer function has been established.

In addition, if one of the three mappings, or transformations, is used, the derivative method
should be set to the same as the integration method. The two methods are allowed to be different
here in case the user does not come from the point of view of mapping or transformation, but
from the point of view of how to implement the integration and how to derive the derivative
from the input samples.

In the discrete PID filter described here, the user is required to enter the following parameters:

(a) KP

(b) KI

(c) KD

(d) Initial condition

(e) Acquisition Time

(f) Pole Factor for Derivative

(g) Derivative Method

(h) Integration Method

KP, KI, and KD are the three PID constants shown in eq. (3). The pole factor for derivative is
the term  shown in eq. (3).

Sampler and Zero Order Hold

The sampler and zero order hold is a specialized first-order discrete filter with the following z -
domain transfer function:

1
)(

)(
)(

zI

zO
zT

This difference equation representing this transfer function is

)()(nInO 

The user is required to enter the following parameters for the sampler and zero order hold:

(a) Initial condition

(b) Acquisition Time

Unit Delay

The unit delay is a specialized first-order discrete filter with the following z -domain transfer
function:

11

)(

)(
)( z

zzI

zO
zT

This difference equation representing this transfer function is

)1()( nInO

The user is required to enter the following parameters for the sampler and zero order hold:

(a) Initial condition

(b) Acquisition Time

Discrete IIR filters versus discrete FIR filters
A simple RC filter without any switches is considered a continuous-time filter because its output
is continuously updated according to its input. For a discrete filter, its output is updated at
discrete time instants only. Discrete filters can be divided into two groups: finite-impulse-
response (FIR) filters and infinite-impulse-response (IIR) filters.

A discrete IIR filter is similar to the continuous-time filters in that, given an impulse at its input,
the response of its output will theoretically take an infinite amount of time to decay back to zero,
if it should decay back to zero at all. For example, a very simple low-pass discrete IIR filter can
be described by the difference equation of:

)1(0.5)1()( nOnInO

where n is an integer. If 1)0(I and 0)(nI for 0n , the input is considered an impulse

input for a discrete filter. If 0)(nO for 0n , the output response will be 15.0)( nnO for
1n , which will take infinite amount of time before the output decay to zero.

On the other hand, a discrete FIR filter produces an output that occupies only a finite amount of
time from an impulse input. For example, a very simple average FIR filter can be described by
the equation of:

 )1()(5.0)( nInInO

Given the same scenario of 1)0(I and 0)(nI for 0n , this simple average FIR filter will
produce an output sequence where 5.0)1()0(OO and 0)(nO for 1,0n . Clearly, the
response of this filter to the impulse input is a very short sequence and the output drops back to
zero very quickly.

The first-order and second-order discrete filters implemented here are typically used to model
IIR filters. These first-order and second-order discrete filters can easily be turned into very
simple FIR filters, however, if the denominator coefficients D0 and D1 are set to zero.

