
Discrete filter 

Operation 
Each of these discrete filters is driven by an input clock signal.  For proper operation, the input 
clock signal needs to be made up of a train of pulses with pulse widths equal to or wider than the 
“Time of Acquisition” set for the filter.  For the most efficient simulation, this kind of pulses can 
be generated by driving periodic pulses through the “Sampling Clock Generator for Discrete 
Filters.”  If the “Sampling Clock Generator for Discrete Filters” is used to generate the input 
clock signals for the discrete filters, the driving periodic pulses can have pulse widths shorter 
than the time of acquisition as long as they are well defined pulses. 
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If the time of acquisition is ACQt , then the “Sampling Clock Generator for Discrete Filters” will 

generate a pulse whose pulse width is equal to ACQt  every time its “TRIG” input makes a positive 

transition exceeding 3V.  During this pulse, the discrete filter will sample the input data at the 
“IN” input pin and it will take ACQt  for it to satisfactorily acquire the input data.  After ACQt  has 

expired, the discrete filter will update its output, and the output will settle within a time duration 
less than or equal to ACQt .  In addition, during this duration when the output is updated, the 

output “CLK_OUT” is raised to a high value. 

 



U1-CLK_OUT

U1-CLK_IN

CLK

time/uSecs 2nSecs/div

11.496 11.498 11.5 11.502 11.504

O
U

T
 /

 V

3

3.5

4

4.5

5

5.5

6

6.5

7

 

 

 

A discrete filter with more than two poles can be synthesized through a cascade of first-order 
and/or second-order discrete filters.  In such case, the timing signal for each driven stage is 
derived from the “CLK_OUT” signal of the immediately preceding stage. 
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First-Order Discrete Filter 
 

The transfer function in the z -domain from the input )(zI  to the output )(zO  for the first-order 
discrete filter is 
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This difference equation representing this transfer function is 

)1(N0)(N1)1(D0)(  nInInOnO  

For example, if N1, N0, and D0 have been set to 0, 0.1, and 99.0 , respectively, the resulting 
first-order discrete filter will have a DC gain of 10.0, a pole located at 99.0z , and no zero. 

 

The user is required to enter the following parameters for the first-order discrete filter: 

(a) N1 

(b) N0 

(c) D0 

(d) Initial condition 

(e) Acquisition Time 

 



Second-order Discrete Filter 
 

The transfer function in the z -domain for the second-order discrete filter is 
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This difference equation representing this transfer function is 

)2(N0)1(N1)(N2)2(0D)1(D1)(  nInInInOnOnO  

A two-pole discrete filter without any zero can be achieved with N1 and N2 both set to zero.  If 
N2 is set to zero but N1 is non-zero, a two-pole discrete filter with a single zero is realized.  If 
N2 is non-zero, then a two-pole two-zero discrete filter is realized. 
 

The user is required to enter the following parameters for the second-order discrete filter: 

(a) N2 

(b) N1 

(c) N0 

(d) D1 

(e) D0 

(f) Initial condition 

(g) Acquisition Time 

 



Discrete PID filter 
 

The transfer function for an analog PID filter is 
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where the A in the three coefficients PAK , IAK , and DAK  are used to signify that these are the 
coefficients associated with Eq. (1), which is defined for the analog PID filter. 

 

Since (1) has two zeroes and one pole, there are more zeroes than poles, resulting in an improper 
transfer function / filter.  A pole is sometimes added to the derivative term to limit the bandwidth 
at higher frequencies.  One form for such a PID filter with a pole added for the derivative action 
is 
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where   is called the pole factor for the derivative term.  In the discrete PID filter provided, the 
implemented transfer function is  
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where  PK , IK , and DK  are coefficients entered by the user.  To match the frequency response 
of the discrete PID filter represented by (3) to the frequency response of the analog PID filter 
represented by (2), a first-order approximation is to set 
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where SAMPLINGT  is the sampling period.  If this first-order approximation is used, the frequency 

response for (3) will have a very good match with the frequency response for (2), as long as the 
poles and zeroes of (2) are more than two decades below the sampling frequency. 

 

The functions )(zSI  and )(zSD  are transfer functions in the z -domain according to the 
integration and derivative methods selected, respectively.  The choices for the method are 
“Forward-Euler,” “Backward-Euler,” and “Trapezoidal.” 
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The integration and the derivative methods are sometimes referred to as the mapping / 
transformation in the literature.  Mapping and transformation are easy and simple ways to 
generate discrete or digital filters with frequency responses that are approximates of the 
frequency response of the original s -domain analog filter.  The approximation is reasonable if 
the poles and zeros of the original analog filter are more than two decades below the sampling 
frequency. 

 

Due to the nature of (3) and (5), the discrete PID filter has two poles in the z -domain, one from 
the integration term, and one from the derivative term.  The pole from the integration term is 
always located at 1z  and the pole due to the derivative term is located at: 
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 (6) 

 

Since the location of this pole should not yield unstable responses, at the very minimum, the 
restraint on ZDp ,  is 

10 ,  ZDp  (7) 

From (6) and (7), the restriction placed on the product DK  is 
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Given values of DK  and  , the location for the pole ZDp ,  in the z -domain can be computed 

from (6).  With a known value of ZDp , , the corresponding pole location in the s -domain can be 

computed as follows: 

SAMPLINGZDSD Tpp /)ln( ,,   (9) 

The formula in (9) gives only one pole location in the s -domain which is mapped to ZDp ,  in the 

z -domain.  There are infinite number of pole locations in the s -domain that are mapped to ZDp ,  

in the z -domain and they are located at SAMPLINGSD TNjp /2,   where N  is an integer.  The 



pole location as defined in (9) is considered to be inside the “primary strip” of the s -domain, 
where the value of s  is bounded by the two horizontal lines SAMPLINGTjs /  in the s -plane. 

 

If ZDp ,  is set to 0.5, the corresponding pole in the “primary strip” of the s -domain will be 

located at SAMPLINGSD Tp /693.0,  , and the pole in the frequency-domain will have a corner 

frequency of about 0.11 of the sampling frequency. 

 

One the other hand, given a known sampling period and the desired pole location SDp ,  in the 

“primary strip” of the s -domain, the location of ZDp ,  in the z -domain can be computed, and 

then the value of   yielding such desired pole locations can be derived.  First, ZDp ,  can be 

computed from SDp ,  and SAMPLINGT  through the following formula: 

)exp( ,, SAMPLINGSDZD Tpp   (10) 

where exp() is the exponential function.  With a sampling frequency of 2 MHz and a desired 
high-frequency pole at 100 kHz, we have 5

, 1028.6 SDp  and 7305.0, ZDp . 

 

Once the desired value of ZDp ,  is set, the value of   yielding such a pole location can be 

computed from (6) in terms of ZDp ,  and DK , and the net results are: 
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If there are already extra low-pass filter(s) along the path of feedback, it may be desirable not to 
introduce the extra pole associated with the derivative term in the discrete PID filter described 
here.  While it is not exactly the same as removing the extra pole, placing ZDp ,  at 0.0z , the 

center of the origin of the z -plane, has almost the same effect.  Such a pole will have no effect 
on the magnitude of the derivative term of the discrete PID filter, but it will introduce a phase 
delay to the derivative term.  Such a phase delay is minimal until the signal of interest is at or 
above one-tenth of the sampling frequency. 

 

If the poles and zeros of the original analog PID filter are well below the sampling frequency, 
then the three integration methods yield essentially the same result and the three derivative 
methods yield essentially the same result.  The three methods were provided as a convenience if 



the user is using one of the three mappings or transformations as a quick way to implement a 
discrete PID filter when the desired analog PID transfer function has been established. 

In addition, if one of the three mappings, or transformations, is used, the derivative method 
should be set to the same as the integration method.  The two methods are allowed to be different 
here in case the user does not come from the point of view of mapping or transformation, but 
from the point of view of how to implement the integration and how to derive the derivative 
from the input samples. 

 

In the discrete PID filter described here, the user is required to enter the following parameters: 

(a) KP 

(b) KI 

(c) KD 

(d) Initial condition 

(e) Acquisition Time 

(f) Pole Factor for Derivative 

(g) Derivative Method 

(h) Integration Method 

KP, KI, and KD are the three PID constants shown in eq. (3).  The pole factor for derivative is 
the term   shown in eq. (3). 



Sampler and Zero Order Hold 
 

The sampler and zero order hold is a specialized first-order discrete filter with the following z -
domain transfer function: 
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This difference equation representing this transfer function is 

)()( nInO   

 

The user is required to enter the following parameters for the sampler and zero order hold: 

(a) Initial condition 

(b) Acquisition Time 

 



Unit Delay 
 

The unit delay is a specialized first-order discrete filter with the following z -domain transfer 
function: 
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This difference equation representing this transfer function is 

)1()(  nInO  

 

The user is required to enter the following parameters for the sampler and zero order hold: 

(a) Initial condition 

(b) Acquisition Time 

 



Discrete IIR filters versus discrete FIR filters 
A simple RC filter without any switches is considered a continuous-time filter because its output 
is continuously updated according to its input.  For a discrete filter, its output is updated at 
discrete time instants only.  Discrete filters can be divided into two groups: finite-impulse-
response (FIR) filters and infinite-impulse-response (IIR) filters. 

A discrete IIR filter is similar to the continuous-time filters in that, given an impulse at its input, 
the response of its output will theoretically take an infinite amount of time to decay back to zero, 
if it should decay back to zero at all.  For example, a very simple low-pass discrete IIR filter can 
be described by the difference equation of: 

)1(0.5)1()(  nOnInO  

where n  is an integer.  If 1)0( I  and 0)( nI  for 0n , the input is considered an impulse 

input for a discrete filter.  If 0)( nO  for 0n , the output response will be 15.0)(  nnO  for 
1n , which will take infinite amount of time before the output decay to zero. 

 
On the other hand, a discrete FIR filter produces an output that occupies only a finite amount of 
time from an impulse input.  For example, a very simple average FIR filter can be described by 
the equation of: 

 )1()(5.0)(  nInInO  

Given the same scenario of 1)0( I  and 0)( nI  for 0n , this simple average FIR filter will 
produce an output sequence where 5.0)1()0( OO  and 0)( nO  for 1,0n .  Clearly, the 
response of this filter to the impulse input is a very short sequence and the output drops back to 
zero very quickly. 
 
The first-order and second-order discrete filters implemented here are typically used to model 
IIR filters.  These first-order and second-order discrete filters can easily be turned into very 
simple FIR filters, however, if the denominator coefficients D0 and D1 are set to zero. 
 


