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Traditional approach to sizing decoupling

0 Determine effective ESR required
» Parallel electrolytic caps until ESR = AV/AI

where AV = desired voltage tolerance
Al = worst-case load change

0 Example: p690 Power 4 CPU
» AV = 3% of 1.5V, Al = 1500A - effective ESR = 30uQ2
» 2 capacitor books with over 800 1000uF aluminum electrolytic caps
» CPU decoupling

+ 383 1000uF 38mQ aluminum electrolytics per cap book - 50uQ2
« 240 470uF 25mQ organic Tantalum on processor board - 104uQ
- Effective ESR = 33.8uQ2 max, typically much less
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Simplified decoupling model
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Current supplied by capacitor after a load step

current

load current

Al | supply current

capacitor discharge current
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Solve for maximum AV

Fort,<T:

AV =Al*R

- Output voltage vs. C

Fort, > t:

AV = Al * (R12) * (T/ty + ty/T)

(t = RC = capacitor time constant)

Capacitor current

Response is limited by ESR!
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But it's not so simple anymore

2 Denser packaging limits the number of output caps
» Fewer caps with much lower ESR - shorter time constant

» All multi-layer ceramic designs - very short time constant

2 Result is that ESR no longer predicts AV

» Regulator response time typically longer than RC time
constant of decoupling caps (t, > 1)

aCan use AV = Al * (R/2) « (t/t, + ty/T) equation, but how to
determine t,?

»t, usually limited by feedback compensation
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Computer modeling

2SPICE
» Different models for transient and AC analysis
» Full switching model is very slow

» Convergence problems!!!

2SIMPLIS
» Same model use for both transient and AC analysis
» Up to 50x faster than SPICE simulators

» No convergence problems
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Key waveforms
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Transient response virtually identical
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AC analysis with SIMPLIS
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SIMPLIS model
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MOSFETSs replaced by ideal switch model

Piecewise-linear resistor represents body diode
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These simplifications have no effect on regulator dynamic performance
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What does “POP” mean?

2 POP stands for Periodic Operating Point Analysis

» POP analysis rapidly locates the steady state operating
point of a switching system without having to simulate the
startup transient conditions. This considerably speeds the
study of effects such as load transients.

» Unlike the static methods used in SPICE, this analysis
mode emulates a frequency sweep measurement as
might be conducted on real hardware producing gain and
phase plots without having to derive averaged models.

(excerpted from http://www.transim.com/SS_simplis.html)

Designing low-frequency decoupling using SIMPLIS 18 October 2007 © 2007 IBM Corporation




IBM Systems and Technology Group

POP algorithm finding periodic steady state
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Add AC source to measure loop gain
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Loop gain

Error amplifier is rolling
off at high frequency
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Move zero to match power stage

(was 1nF)

Zero moves from 15.9kHz to 7.2kHz
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Compensator gain and phase vs op amp GBW
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Updated Loop gain

Loop gain
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Step response
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22uUF 0805 X5R decoupling cap model:
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Impedance @ 1.25V & 800kHz

Designing low-frequency decoupling using SIMPLIS

18 October 2007

© 2007 IBM Corporation




IBM Systems and Technology Group

Step response with 10 caps
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AV =10% - needs improvement!
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Output impedance
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Measuring output impedance

2 Inject AC current into output

2 Convert AC voltage source to AC
current source

e

Unity-gain voltage-controlled current source
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Open- and closed-loop output impedance

i Open-loop
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Output impedance vs loop gain
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Step response vs loop gain
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8mQ x 5A= 40mV - excellent agreement!
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Can the number of output caps be reduced?
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Peak output impedance the same with 5 or 10 caps
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Step response vs number of output caps
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What's causing the overshoot?
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Slew rate limiting of error amp!
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Parameterized op amp
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Step response with 5V/us amplifier
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Power stage cannot slew fast enough in negative direction
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Summary

2 Difficult to size decoupling with all ceramic or low-ESR
electrolytic caps

» Computer modeling is essential to predict the regulator
response to sudden load changes

» SPICE is OK for simulating transient behavior, but AC
analysis not possible with switching model

» SIMPLIS provides both transient and AC analysis with
the same model

» Relatively easy to size decoupling once loop gain can be
observed and the compensation optimized
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Thank you!
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